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Abstract. The spatial circular restricted three-body problem in the nonres-
onant case is investigated. We apply Gaussian averaging to obtain averaged
equations of motion in terms of osculating elements. A Keplerian ellipse with a
focus at the main body (the Sun) is taken as an unperturbed orbit. We derive
a twice-averaged disturbing function in the form of an explicit analytical series
with coefficients that are expressed in terms of Gauss and Clausen hypergeo-
metric functions. For a reduced system, phase portraits of oscillations in the
plane of are shown in the fourth approximation. The radius of convergence
of the power series for fixed values of Lidov-Kozai integral was investigated.
It is shown that the power series is asymptotic in the sense of Poincaré in
the regions of divergence. The asymptotic nature of the series allows the use
of perturbation theory methods in regions of divergence, excluding uniformly
close orbits. An estimate of the number of retained members of the series is
obtained, which guarantees the reliability of constructing phase portraits.

Introduction

We investigate the classical problem of the Keplerian orbit evolution for a mass-
less body in the gravitational field of two primaries (the Sun and Jupiter). This
problem was first considered by Gauss in 1809. Zeipel [1] continued these studies
by investigating Lindstedt series of solutions to the problem. A detailed study of
Hill’s case is contained in the articles [2, 3]. The main goal of the report is to
obtain new results using modern information technologies.

1. Statement of the problem

We consider the circular spatial restricted three-body problem. Assume that a
massless body (asteroid, or satellite) P is in the gravitational field of two primaries
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moving in a circular orbit of radius ;. The central body S (Sun) of mass mg affects
the asteroid with the force F;, and the second body J (Jupiter) of mass m; has a
disturbing effect with the force F';. Assume that the unperturbed trajectory of the
satellite is a Keplerian ellipse with a focus at S, and its plane II makes an angle
of ¢ with the plane I of motion of the attracting bodies (Fig. 1).

FIGURE 1. Internal (a) and external (b) cases

2. Averaged perturbation function

The perturbation functions of the problem and their twice averaging are the fol-

lowing:

Internal case

External case

R= fZJ 3 (T) Py(cos),

r
n=2 J

. fmj fe%s) (a>2n
Re= LM Np, (L)
TJ\/I—@Q; ry

Dy = (14 ¢)*""? Py, (0)x

1 2e
F: —,2 2:1; ——
(271<27 n+2; 761)X

R—fmJ 1+T§_T3+§:(2)n13(cos )
Ty rar —\r " Rk
fmy 1 = AR
R = 1+ D, (—) ,
a V1 —e2 712::1 a

Dy = (1+4¢€)' 72" Py, (0)x

1 2e
F - 1-2n,1;, ——
( 2,1 (27 n, 761) X

Py, (0) Py, (cos i)+ Py, (0) Pay, (cos i) +
2 Z(—l)kAéin) (e, 1) cos 2k:w> . 2 Z Aéin) (e,4)(—1)" cos 2k‘w> .
k=1 k=1
a (1 — 62) . .
Here r = ————~ 7 is the angle between r; and r, P,(cos~) is the Le-
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gendre polynomial, Fy; and F3% is the Gaussian and Clausen functions.
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3. Phase portraits of oscillations in a reduced system
We have three first integrals of the evolution equations:

a = ¢y, (1762) cos?i=c, R*™ =h
The reduced equations hare the following

de  V1-€20R dw V1—¢€20R R= R

dt na?e Ow’ dt  na%e Oe’ N a-
Phase portraits of oscillations in the fourth approximation (n = 4) are shown in
Fig.2
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FIGURE 2. Phase portraits (a) internal case ¢; = 0.1, a/r; = 0.6,
(b) external case ¢; = 0.1, a/r; = 0.333

4. Convergence and divergence regions of power series of averaged
perturbation function

The convergence radius of function ]%(a7 e,w,c1) is calculated using the Cauchy-

Hadamard formula:
. —1
ple,w,cq) = ( li_>m Y/ |Dn|)

The curves isolines p (e,w, c1) = const in plane (e,w) for ¢; = 0.1 and n = 100 are
shown in the following figures [4]. The power series of R(a, e,w, c1) diverges above
the curve p (e,w, c1) = p when p is the parameter of expansion. Below this curve,
the series converges.
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o asatnzio ¢ =0.1,n=100

FIGURE 3. Convergence radius (a) internal case, (b) external case

5. On Poincaré asymptoticity of a power series

We investigated [4] the behavior of a power series in regions of divergence. It is
shown numerically that this series is asymptotic in the sense of Poincaré, i.e.

o= B ~ 0 (54

over a finite period of time where R}, is partial sum of a series. Here k is the
number of retained members of the series. It follows from the calculations that the
partial sum of seventy terms approximates the function with high accuracy. The
asymptotic nature of the series allows, using traditional methods of perturbation
theory, to study the evolution of Keplerian orbital elements for all values of y from
the interval [0, 1), excluding the case pu ~ 1.
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