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Integrability of ODEs
Let us see the autonomous ODE system

d xi

d t
= φi(x1, . . . , xn), i = 1, . . . ,n.

Perhaps it has m independent functions of system variables
Ik (x1, . . . , xn) such that complete differentiation with respect to the
independent variable t is equal to zero along trajectories in the phase
space of the system. We will talk about these functions as the first
integrals of this system

d Ik (x1, . . . , xn)

d t

∣∣∣∣ d xi
d t =φi (x1,...,xn)

= 0, k = 1, . . . ,m.

The system can have m first integrals. We will say the system is
integrable if it has enough of such (real) integrals.
For integrability of an autonomous two-dimensional system, it is
enough to have a single integral.
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Simple Example
Let us see the equation of the harmonic oscillator

ẍ(t) + ω2
0x(t) = 0

This equation is equivalent to the system{
ẋ(t) = y(t),
ẏ(t) = −ω2x(t).

(1)

The first integral of this system is

I(x(t), y(t)) = x2(t) + y2(t)/ω2
0.

Due to (1) its full derivation in time is zero

d I(x(t),y(t))
d t = 2x(t)ẋ(t) + 2y(t)ẏ(t)/ω2

0 =

= 2x(t)y(t)− 2x(t)y(t) = 0.
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Solutions

Due to the constancy of the first integral

I(x(t), y(t)) = x2(t) + y2(t)/ω2
0 = C2

1 ,

we evaluate y(t) as a function of x(t)

y(t) = ±ω2
0

√
C2

1 − x2(t).

By substituting y(t) in system (1) we get the autonomous equation of the first
order

dx(t)
dt

= ±ω2
0

√
C2

1 − x2(t),

or
± dx(t)
ω2

0

√
C1 − x2(t)

= dt , i.e. x(t) = ±C1 · sin(ω0t + C2).
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Integrability is an important property of the system. In particular, if
a system is integrable then it is solvable by quadrature.
Knowledge of first integrals is also important for studying the
phase portrait, bifurcation analysis, constructing symplectic
integration schemes, etc.
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Problem

Generally, integrability is a rare property.
But the system may depend on parameters.
Our task here is to find the values of system parameters at which
the system is integrable.

St.Petersburg ( EIMI ) AMCM 2024 August 20, 2024 6/53



Kamke’s Book
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Local Analysis and Resonance Normal Form

The resonance normal form was introduced by H. Poincaré for the
local investigation of systems of nonlinear ordinary differential
equations. It is based on the maximal simplification of the
right-hand sides of these equations by invertible transformations.
The normal form approach was developed in works of
G.D. Birkhoff, T.M. Cherry, A. Deprit, F.G. Gustavson, C.L. Siegel,
J. Moser, A.D. Bruno and others. This technique is based on the
Local Analysis method by Prof. Bruno [Bruno 1971, 1972, 1979,
1989].
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The Simplest Form of a Polynomial System

{
ẋ = a + αx + βy + P(x , y),
ẏ = b + γx + δy + Q(x , y).

By shifting and similarity transformation{
˙̃x = λ1x̃ + σ ỹ + P̃(x̃ , ỹ), σ 6= 0 only if λ1 = λ2,
˙̃y = λ2ỹ + Q̃(x̃ , ỹ).

Ideally we wish to get a linear system{
˙̃̃x = λ1

˜̃x + σ ˜̃y ,
˙̃̃y = λ2

˜̃y .

This cannot be done throughout the entire phase space, but it is
possible locally – at a small domain near the stationary point.
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Power Series Approaches

Newton. Solving differential equations in power series with
respect to the independent variable near the stationary point.
Poincare. Transformation of dependent variables in the form of
power series in the neighborhood of a stationary point.
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Local Integrability

We consider an autonomous system of ordinary differential equations

d xi

d t
def
= ẋi = φi(X ), i = 1, . . . ,n, (2)

where X = (x1, . . . , xn) ∈ Cn and φi(X ) are polynomials.

In a neighborhood of the point X = X 0, the system (2) is locally
integrable if it has there sufficient number m of independent first
integrals of the form

Ik (X ) =
ak (X )

bk (X )
, k = 1, . . . ,m,

where functions ak (X ) and bk (X ) are analytic in a neighborhood of this
point. Such functions Ik (X ) are called the formal integral.
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Multi-index Notation
Let’s suppose that we treat the reduced to a diagonal polynomial
system near a stationary point at the origin and rewrite this
n-dimension system in the terms

ẋi = λixi + xi
∑
q∈Ni

fi,qxq, i = 1, . . . ,n , (3)

where we use the multi-index notation

xq ≡
n∏

j=1

xj
qj

with the power exponent vector q = (q1, . . . ,qn)
Here the sets:

Ni = {q ∈ Zn : qi ≥ −1 and qj ≥ 0 , if j 6= i , j = 1, . . . ,n} ,

because the factor xi has been moved out of the sum in (3).
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Normal Form
The normalization is done with a near-identity transformation:

xi = zi + zi
∑
q∈Ni

hi,qzq, i = 1, . . . ,n (4)

after which we have system (3) in the normal form:

żi = λizi + zi
∑

〈q,L〉 = 0
q ∈ Ni

gi,qzq, i = 1, . . . ,n, (5)

where L = {λ1, . . . , λn} is the vector of eigenvalues.

Theorem (Bruno 1971)

There exists a formal change (4) reducing (3) to its normal form (5).

Note, the normalization (4) does not change the linear part of the
system.
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Resonance Terms

The important difference between (3) and (5) is a restriction on the
range of the summation, which is defined by the equation:

〈q,L〉 =
n∑

j=1

qjλj = 0 . (6)

I.e. the summation in the normal form (5) contains only terms, for
which (6) is valid. They are called resonance terms.

In the two-dimensional case there are a finite number of them,
if the ratio of the eigenvalues is not non-positive rational.
We rewrite below the normalized equation (5) as

żi = λizi + zigi(Z ), (7)

where gi(Z ) is the re-designate sum.
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Calculation of the Normal Form

The h and g coefficients in (4) and (5) are found by using the recurrent
formula:

gi,q + 〈q,L〉 · hi,q = −
n∑

j=1

∑
p + r = q

p, r ∈
⋃

i Ni
q ∈ Ni

(pj + δij) · hi,p · gj,r + Φ̃i,q , (8)

For this calculation we have two programs.
in LISP [Edneral, Khrustalev 1992]
in the high-level language of the MATHEMATICA system
[Edneral, Khanin 2002].
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Conditions A and ω

There are two conditions
Condition A. In the normal form (5)

gj(Z ) = λja(Z ) + λ̄jb(Z ), j = 1, . . . ,n, (9)

where a(Z ) and b(Z ) are some formal power series.
Condition ω (on small divisors) [Bruno 1971]. It is fulfilled for
almost all vectors L. At least it is satisfied at rational eigenvalues.

Theorem (Bruno 1971)

If vector L satisfies Condition ω and the normal form (5) satisfies
Condition A then the normalizing transformation (4) converges.
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Local Integral in the Resonance Case

Consider the case of a [N : M] resonance in the two-dimension
system. The eigenvalues here satisfy the ratio N · λ1 = −M · λ2 and
from the condition A (9) we have

g1(Z ) = λ1a(Z ) + λ̄1b(Z ), g2(Z ) = λ2a(Z ) + λ̄2b(Z ),

i.e. N · g1(Z ) = −M · g2(Z ).
The normalized system (7) can be conditionally rewritten as

N ×
∣∣∣∣d log(z1)

d t
= λ1 + g1(Z ) , −M ×

∣∣∣∣d log(z2)

d t
= λ2 + g2(Z ) .

So,
d log(zN

1 · zM
2 )

d t
= 0 or zN

1 · zM
2 = const .

It is the local first integral. So, the system is local integrable.
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Near a stationary point the condition A:

Ensures convergence;

Provides the local integrability;
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Problem
We will demonstrate the search for integrable cases using an example
of the [Bautin 1952, Lunkevich Sibirskii 1982] system which has a
quadratic polynomial right hand sides

dx̃(t)
dt = αx̃(t) + βỹ(t) + ˜̃a1x̃2(t) + ˜̃a2 x̃(t)ỹ(t) + ˜̃a3 ỹ2(t),

dỹ(t)
dt = γx̃(t) + δỹ(t) + ˜̃b1x̃ (t) + ˜̃b2 x̃(t)ỹ(t) + ˜̃b3 ỹ2(t),

(10)

where x̃(t) and ỹ(t) are functions in time and other letters are arbitrary
real parameters.

By a linear transformation, the linear part of this system can be
reduced to the Jordan form. The origin is the stationary point now

ẋ = λ1 x + σ y + ã1x2 + ã2 x y + ã3y2,

ẏ = λ2 y + b̃1x2 + b̃2 x y + b̃3y2.

We omit here the time dependence and use a dot instead of the time
derivative. λ1, λ2 are eigenvalues. If λ1 6= λ2 then σ = 0.
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Two Cases

If both eigenvalues are non-zero at the same time, we can choose
|λ2| = 1 using time scaling. Also we put σ = 0. Then we have two
resonance cases of system (10). The center case

ẋ = i y + a1 x2 + a2 x y + a3y2,

ẏ = −i x + b1 x2 + b2 x y + b3y2,

and the saddle case

ẋ = λ x + a1 x2 + a2 x y + a3y2,

ẏ = −y + b1 x2 + b2 x y + b3y2,

where 0 ≥ λ ∈ Z.
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Phase Portrait near Stationary (Equilibrium) Points
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Integrable Center Case
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The level line is closed near a local extremum of the
real first integral
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Non-integrable Focus Case
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Integrable Saddle Case
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Non-integrable Saddle Case
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Hypothesis

We seek integrability by solving the local integrability condition at all
stationary points of the system with resonances in the linear parts.The
basis of our technique can be formulated as a hypothesis

Hypothesis
For the existence of the first integral in a certain domain of the ODEs
phase space, local integrability is required in the neighborhood of each
stationary point in this domain.

At resonance cases the local integrability can be written down as the
system of algebraic equations on the system parameters. We can
create this system by the computer program.
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Condition of Local Integrability as a System of
Algebraic Equations
For the saddle case and the resonance 1 : 1 the truncated A system at
the origin stationary point is

a1a2 − b2b3 = 0,

−a3b2(−6a2
1 + 9a1b2 + 14b1b3 + 6b2

2) + 9a2
2(a1b2 + b1b3) + a2(14a1a3b1−

3b3(2b1b3 + 3b2
2)) + 6a3

2b1 = 0,

432a4
1a2a3 + 36a3

1(54a3
2 + 18a2

2b3 − 61a2a3b2 − 18a3b2b3)−
6a2

1(162a3
2b2 + a2

2(131a3b1 − 162b2b3) + 3a2a3(106b1b3 + 75b2
2)+

2a3b2(194a3b1 − 381b2b3)) + a1(3708a4
2b1 − 108a3

2(33b2
2 − 38b1b3)−

3a2
2b1(5299a3b2 + 1524b2

3)− 4a2(868a2
3b2

1 − 981a3b3
2 + 81b2

3(3b2
2 − 2b1b3))+

36b2(142a2
3b1b2 + a3b3(53b1b3 − 114b2

2)− 18b2b3
3))− 1782a4

2b1b2
−6a3

2b1(523a3b1 + 654b2b3) + 18a2
2b3(−284a3b2

1 + 75b1b2b3 + 198b3
2)+

3a2(a3(776b2
1b2

3 + 5299b1b2
2b3 + 594b4

2) + 12b2b2
3(61b1b3 + 27b2

2))+

2b2(a2
3b1(1736b1b3 + 1569b2

2) + 3a3b2b3(131b1b3 − 618b2
2)−

108b3
3(2b1b3 + 9b2

2)) = 0.

It has been experimentally established that adding further equations
does not change solutions of this system.
Equations of a similar form were obtained also for resonances 2 : 1
and 3 : 1 and for pure imaginary eigenvalues also.
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Solutions of the Condition A
The MATHEMATICA-11 system solver Solve received 13 families of rational
solutions of the algebraic system above. Some of them are a consequence of
others, we marked them by asterisks:

1) {a1 =
b2b3

a2
, b1 =

a3b3
2

a3
2
};

2) {a2 = 0, b2 = 0};

3) {a1 = − b2
2 , b3 = − a2

2 };

4) ∗{a1 = − b2
2 , a2 = 0, b3 = 0};

5) {a2 = 0, a3 = 0, b3 = 0};

6) ∗{a1 = 0, b2 = 0, b3 = − a2
2 };

7) {a1 = 2b2, b1 =
a2b2

a3
, b3 = 2a2};

8) ∗{a1 = 2b2, b1 =
a3b3

2
a3

2
, b3 = 2a2};

9) ∗{a1 = 2b2, a2 = 0, a3 = 0, b3 = 0};
10) ∗{a1 = 2b2, a2 = 0, b1 = 0, b3 = 0};
11) ∗{a1 = 0, a3 = 0, b2 = 0, b3 = 2a2};

12) {a1 = − b2
2 , a3 = 0, b1 = 0, b3 = − a2

2 };

13) {a1 = 2b2, a3 = 0, b1 = 0, b3 = 2a2}.

With these sets of parameters, we checked, if possible, the integrability
condition at other stationary points of the system.
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Calculation of the First Integrals

An autonomous second order system can be rewritten as a
non-autonomous first order equation. Let

d x(t)
d t

= P(x(t), y(t)),
d y(t)

d t
= Q(x(t), y(t)).

We divided the left and right hand sides of the system equations into
each other. In result we have the first-order non-autonomous
differential equation for x(y) or y(x)

d x(y)

d y
=

P(x(y), y)

Q(x(y), y)
or

d y(x)

d x
=

Q(x , y(x))

P(x , y(x))
.

Then we try to solve them by the MATHEMATICA-11 solver DSolve
and got the solution y(x) (or x(y)). After that we calculated the integral
from this solution by extracting the integration constant.

If this procedure failed, we manually used the Darboux method.
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First Integrals

We calculated the integrals for the resonance 1:1 case:

1) ẋ = x + b2b3x2/a2 + a2xy + a3y2, ẏ = −y + a3b3
2x2/a3

2 + b2xy + b3y2,

I1(x, y) =
(

(a3b2 − a2b3)(b2x − a2y)− a2
2

)
×(

b2
2

(
1− (a2b3−a3b2)(a2y−b2x)

a2
2

)) a2(a2+2b3)
a3b2−a2b3 ×(

2a4
2a3 + (a2(a2 + b3) + a3b2)

(
a3b2

2x2(a2
2 + 2a3b2)+

a2x
(

y(a2
2 + 2a3b2)(a2

2 − a2b3 + a3b2) + 2a2a3b2

)
+

a2
2a3y(y

(
a2

2 + 2a3b2)− 2a2

)))
;

2) ẋ = x + a1x2 + a3y2, ẏ = −y + b1x2 + b3y2;

I1(x, y) = b1(a3b1 − a1b3)
∫

(−y + b1x2 + b3y2)×(
x
(
−x
(

a2
1 + b1x(a1b3 − a3b1) + b1b3

)
− 2a1

)
−

y2
(

b3x(a1b3 − a3b1) + a1a3 + b2
3

)
+ y(2b3 − x(a1x + 3)(a3b1 − a1b3))+

a3y3(a1b3 − a3b1)− 1
)−1

dx ;
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3) ẋ = x − 1
2 b2x2 + a2xy + a3y2, ẏ = −y + b1x2 + b2xy − 1

2 a2y2,

I3(x, y) = −3a2xy2 − 2a3y3 + 2b1x3 + 3b2x2y − 6xy ;

4) ẋ = x − 1
2 b2x2 + a3y2, ẏ = −y + b1x2 + b2xy ,

I4 = − 2
3 a3y3 + 2

3 b1x3 + xy(b2x − 2);

5) ẋ = x + a1x2, ẏ = −y + b1x2 + b2xy ,

I5(x, y) =
(a1x+1)

−
b2
a1

−1

b2(a1−b2)(a1+b2)

(
a2

1b2xy − a1b1b2x2 − 2a1b1x − b1b2
2x2 −

2b1b2x − 2b1 + b3
2(−x)y

)
;

6) ẋ = x + a2xy + a3y2, ẏ = −y + b1x2 − 1
2 a2y2,

I6 = xy(a2y + 2) + 2
3 a3y3 − 2

3 b1x3;

7) ẋ = x + 2b2x2 + a2xy + a3y2, ẏ = −y +
a2b2

a3
x2 + b2xy + 2a2y2,

I7(x, y) =
a2b2x2

a3
+ 2a2y2 + b2xy − y ;
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8) ẋ = x + 2b2x2 + a2xy + a3y2, ẏ = −y +
a3b3

2
a3

2
x2 + b2xy + 2a2y2,

I8 =
((

a3b2 − 2a2
2

)
(b2x − a2y)− a2

2

)(
b2

2

(
1−

(
2a2

2−a3b2
)

(a2y−b2x)

a2
2

)) 5a2
2

a3b2−2a2
2 ×(

2a4
2a3 +

(
3a2

2 + a3b2

) (
a3b2

2x2
(

a2
2 + 2a3b2

)
+

a2x
(

y
(

a3b2 − a2
2

) (
a2

2 + 2a3b2

)
+ 2a2a3b2

)
+ a2

2a3y
(

y
(

a2
2 + 2a3b2

)
− 2a2

)))
9) ẋ = x + 2b2x2, ẏ = −y + b1x2 + b2xy ,

I9 = (3b3
2xy − b1(3b2x(b2x + 2) + 2))/(3b3

2(2b2x + 1)3/2);

10) ẋ = x + 2b2x2 + a3y2, ẏ = −y + b2xy ,

I10(x, y) =
a3b2

2

(
1
3 log

(
a3y2+3x

)
− 1

2 log
(

a3b2y2+2b2x+1
))

b2+1 +
a3b2

2 log(3b2y+3y)

3(b2+1)
;

11) ẋ = x + a2xy, ẏ = −y + b1x2 + 2a2y2,

I11(x, y) =
a2

2b1 log(x)

3(a2−1)
−

a2
2b1

(
1
2 log

(
a2b1x2−2a2y+1

)
− 1

3 log
(

3y−b1x2
))

a2−1 ;

12) ẋ = x − b2/2x2 + a2xy, ẏ = −y + b2xy − a2/2y2,

I12(x, y) =
a2xy2−b2x2y+2xy

a2
;

13) ẋ = x + 2b2x2 + a2xy, ẏ = −y + b2xy + 2a2y2,

I13(x, y) = (216a3
2y3 − 648a2

2b2xy2 − 324a2
2y2 + 648a2b2

2x2y + 648a2b2xy+

162a2y − 216b3
2x3 − 324b2

2x2 − 162b2x − 27)/(x2y2).
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Nonintegrable Case?

We have carried out similar calculations for the case of pure imaginary
eigenvalues and got 20 appropriate sets of parameters (11
independent). We found integrability for all sets.

Also we did that for the resonance 2:1 and got 12 sets of parameters
(8 independent). 7 of them correspond to integrable cases. But for one

ẋ = 2x − 1
2

b3xy , ẏ = −y + b1x2 + b3y2,

we could not find the first integral. This case needs further research.
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Non-resonant Case

But the algebraic systems for each resonance have a similar form and
are written with respect to the same variables. That’s why the next step
was to combine algebraic equations for local integrability conditions for
all three calculated resonances 1 : 1, 2 : 1 and 3 : 1. In other words,
we tried to extrapolate the results of resonant cases to the situation
with arbitrary eigenvalues. Of course, such extrapolation does not
describe all integrable cases.

The solutions of the resulting system of this 9 equations can predict
the integrable cases of the general system

ẋ = α x + a1 x2 + a2 x y + a3 y2,

ẏ = − y + b1 x2 + b2 x y + b3 y2,
(11)

where α is an arbitrary parameter.
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Solutions of the Combined System

The system has 14 rational solutions of the system above. Some of
them are a consequence of others. 11 solutions are independent:

1) {a2 = 0, a3 = 0, b2 = 0};
2) {a2 = 0, a3 = 0, b3 = 0};
3) {a1 = 0, b1 = 0, b2 = 0};
4) ∗{a1 = 0, a2 = 0, b1 = 0, b2 = 0};
5) {a1 = 2b2, a2 = 0, b1 = 0, b3 = 0};
6) {a1 = 0, a3 = 0, b1 = 0, b3 = 0};
7) {a1 = 0, b1 = 0, b2 = 0, b3 = 0};

8) {a1 = 0, b1 = 0, b2 = 0, b3 = − a2
2 };

9) {a1 = b2, a3 = 0, b1 = 0, b3 = a2};
10) {a1 = 0, b1 = 0, b2 = 0, b3 = a2};
11) {a1 = 0, a3 = 0, b2 = 0, b3 = 2a2};
12) {a1 = 0, b1 = 0, b2 = 0, b3 = 2a2};
13) ∗{a1 = 0, a2 = 0, b1 = 0, b2 = 0, b3 = 0};

14) ∗{a1 = 0, a3 = 0, b1 = 0, b2 = 0, b3 = − a2
2 }.

For all sets of parameters above we found the first integrals.
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Integrals of the Non-resonant System
1) ẋ = αx + a1x2, ẏ = −y + b1x2 + b3y2,

This is the integrable case, but the expression for the first integral is too huge for a demonstration here.

2) ẋ = αx + a1x2, ẏ = −y + b1x2 + b2xy ,

I2(x, y) =
x1/α(α+a1x)

− 1
α

−
b2
a1

(α+1)a1
×αb1x

( a1x
α

+ 1
) 1
α

+
b2
a1 2F1

(
1 + 1

α
,

b2
a1

+ 1
α

; 2 + 1
α

;− a1x
α

)
−

αb1x
( a1x
α

+ 1
) 1
α

+
b2
a1 2F1

(
1 + 1

α
,

b2
a1

+ 1
α

+ 1; 2 + 1
α

;− a1x
α

)
−

αa1y − a1y) ;

3) ẋ = αx + a2xy + a3y2, ẏ = −y + b3y2,

I3(x, y) =
yα(1−b3y)

−α−
a2
b3

α+2 ×(
a3y2(1− b3y)

α+
a2
b3 2F1

(
α + 2,

a2+b3+b3α
b3

;α + 3; b3y
)

+ αx + 2x

)
;

4) ẋ = αx + a3y2, ẏ = −y + b3y2,

I4(x, y) = e−α(log(1−b3y)−log(y))

(α+1)b3
×(

a3yα+1
2F1(α, α + 1;α + 2; b3y)eα(log(1−b3y)−log(y))−

a3yα+1
2F1(α + 1, α + 1;α + 2; b3y)eα(log(1−b3y)−log(y))−

αb3x − b3x)
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5) ẋ = αx + 2b2x2 + a3y2, ẏ = −y + b2xy ,

I5(x, y) =
a3b2

2
α(α+2)(b2+1)

×(
−α log

(
α + a3b2y2 + 2b2x

)
− 2 log

(
α + a3b2y2 + 2b2x

)
+

2 log
(

a3y2 + (α + 2)x
)

+ 2α log(y)
)

6) ẋ = αx + a2xy, ẏ = −y + b2xy ,

I6(x, y) = −b2x + a2y + log(x) + α log(y);

7) ẋ = αx + a2xy + a3y2, ẏ = −y ,

I7(x, y) = yα(−a2y)−α
(

a2
2xea2y (−a2y)α − a3Γ(α + 2,−a2y)

)
/a2

2;

8) ẋ = αx + a2xy + a3y2, ẏ = −y − 1
2 a2y2,

I8(x, y) = yα
(α+2)(α+3)(a2y+2)α

×(
2a3y2

(
1
2 a2y + 1

)α (
2(α + 3) 2F1

(
α, α + 2;α + 3;− 1

2 a2y
)

+

(α + 2)a2y 2F1

(
α, α + 3;α + 4;− 1

2 a2y
))

+

(α + 2)(α + 3)x(a2y + 2)2
)

;

9) ẋ = αx + b2x2 + a2xy, ẏ = −y + b2xy + a2y2,

I9(x, y) = xyα
b2

(α− α a2y + b2x)−α−1 ;
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10) ẋ = αx + a2xy + a3y2, ẏ = −y + a2y2,

I10(x, y) = yα
(α+1)a2(a2y−1)(1−a2y)α

×(
a2a3y2(1− a2y)α 2F1(α + 1, α + 1;α + 2; a2y)−

a3y(1− a2y)α 2F1(α + 1, α + 1;α + 2; a2y)+
αa2x + a2x + a3y) ;

11) ẋ = αx + a2xy, ẏ = −y + b1x2 + 2a2y2,

I11(x, y) =
a2

2b1x2
(
−b1x2+2αy+y

)2α

α(2α+1)(a2−α)
(
α(2a2y−1)−a2b1x2

)2α+1 ;

12) ẋ = αx + a2xy + a3y2, ẏ = −y + 2a2y2,

I12(x, y) =
yα(1−2a2y)

−α− 1
2

α+2 ×(
a3y2(1− 2a2y)

α+ 1
2 2F1

(
α + 3

2 , α + 2;α + 3; 2a2y
)

+ αx + 2x
)

;

13) ẋ = αx + a3y2, ẏ = −y ,

I13(x, y) = yα(2x + αx + a3y2)/(2 + α);

14) ẋ = αx + a2xy, ẏ = −y − 1
2 a2y2,

I14(x, y) = xyα(a2y + 2)2−α.

St.Petersburg ( EIMI ) AMCM 2024 August 20, 2024 39/53



Examples 9.1 – 9.4 and 9.6 of chapter IX of the book [Kamke] are
examples of integrable cases of systems of two autonomous ODEs
with quadratic polynomial right-hand sides. Systems 9.1 and 9.6 have
the linear parts with all zero eigenvalues and are outside the scope of
this discussion. Other examples are:

System 9.2 ẋ = x(ay + b), ẏ = y(cx + d), after changing the
time t → −τ/d goes to case 6 above, if we substitute
α→ −b/d ,a2 → −a/d ,b2 → −c/d ;
System 9.3 ẋ = x [a(px + qy) + α], ẏ = y [b(px + q) + β].
Case 9 above is its special case at a = b by changing the time
and parameters α,a2 and b2 ;
System 9.4 ẋ = h(a− x)(c − x − y), ẏ = k(b − y)(c − x − y),
by the shift x → x + a, y → y + b is reduced to the form with a
stationary point at the origin
ẋ = h x (a + b− c + x + y), ẏ = k y (a + b− c + x + y), and also
can be transformed to case 9 at the special case h = k .

So, our results are consistent with this book.
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Other Examples

We treated the degenerated system [Bruno, Edneral, Romanovski
2017], [Bruno, Edneral 2024]{

ẋ = −y3 − b x3y + a0 x5 + a1 x2y2

ẏ = (1/b) x2y2 + x5 + b0 x4y + b1 x y3

with five arbitrary real parameters b 6= 0,a1,a2,b1,b2.

With this technique, we found 7 parameter sets at which the system
above is integrable.
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For the Liénard-type system{
ẋ = y
ẏ = (a0 + a1x) y + b1x + b2x2 + b3x3

with five arbitrary real parameters a0,a1,b1,b2,b3 we we found 6
parameter sets at which the system is integrable [Edneral 2023].

So we have results for more than just the homogeneous quadratic
right-hand side.
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Integrable Cases of a Three-dimensional Problem
First we considered resonant cases of the system

ẋ = α x + a2 x y + a4 x z + a5 y z,
ẏ = −β y + b2 x y + b4 x z + b5 y z,
ż = − z + c2 x y + c4 x z + c5 y z

(12)

with natural α, β on the square table {1,2,3} × {1,2,3}
N α β Algebraic solutions ODEs Solutions % Success
8 1 1 23 19 83
8 1 2 16 12 75
8 1 3 25 19 76
8 2 1 57 49 86
8 2 2 34 29 85
8 2 3 43 35 81
9 3 1 60 51 85
9 3 2 63 58 92
10 3 3 43 38 88
Σ 364 310
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Then we solved the combined algebraic system of 329 equations,
found its 10 solutions, and opened that MATHEMATICA-11 system
solved all corresponding systems of ODEs of the form (12) except one
(a red color). These systems with arbitary α and β are:

ẋ = αx + a2x y + a4x z + a5y z, ẏ = −βy + b5y z, ż = −z + c5y z;
ẋ = αx , ẏ = −βy + b2x y + b4x z, ż = −z + c4x z;
ẋ = αx + a2x y + a4x z + a5y z, ẏ = −βy + a4y z, ż = −z − a2y z;
ẋ = αx , ẏ = −βy + b2x y , ż = −z + c4x z;
ẋ = αx , ẏ = −βy + b4x z, ż = −z + c4x z;
ẋ = αx , ẏ = −βy , ż = −z + c4x z + c5y z;
ẋ = αx , ẏ = −βy + b2x y + b5y z, ż = −z;
ẋ = αx + a4x z, ẏ = −βy + b4x z + a4y z, ż = −z;
ẋ = αx + a5y z, ẏ = −βy + b2x y , ż = −z − b2x z;
ẋ = αx , ẏ = −βy , ż = −z + c4x z.

However, the Maple-17 system gives finite solutions for all cases
above.
Of course, such extrapolation describes only the simplest cases.
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Non-resonant Three-dimensional System

Finally, we considered the general case of a three-dimensional system
with 20 parameters

ẋ = α x + a1 x2 + a2 x y + a3 y2 + a4 x z + a5 y z + a6 z2,

ẏ = −β y + b1 x2 + b2 x y + b3 y2 + b4 x z + b5 y z + b6 z2,

ż = − z + c1 x2 + c2 x y + c3 y2 + c4 x z + c5 y z + c6 z2.

Calculating the normal form up to 6th order for 4 integer pairs {α, β}=
{1,1}, {1,2}, {2,1} and {2,2}, we got a system of 121 equations for
18 parameters. We found 174 solutions for it. For 109 of the found sets
of parameters the MATHEMATICS-13.3.1.0 system calculated
solutions to the corresponding dynamical systems.
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3D Chemical Kinetics Models

There are many cases of integrability of three-dimensional
systems and the corresponding exact solutions can be useful in
applications, for example, in problems of chemical kinetics
[Levanov, Antipenko 2006].
The explicit form of solutions allows us to study the qualitative
picture of the phase space of the system depending on the
parameters, and bifurcation analysis can allow us to discover new
phenomena in the simulated processes.
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Jabotinsky-Korzukhin model

Let’s consider, for example, the Jabotinsky-Korzukhin model
[Korzukhin, Jabotinsky 1965].

ẋ = k1x(C − y)− k0x z,
ẏ = k1x(C − y)− k2y ,
ż = k2y − k3z.

The eigenvalues of the linear part of this system are equal to

{C · k1,−k2,−k3}.
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After diagonalization, the linear part of the Jabotinsky-Korzukhin
model takes the form with the quadratic right hand side.
The question arises: under what additional conditions does the
diagonalized version of the Jabotinsky-Korzukhin system appear
among the exactly solvable cases of the integrable system?
We found that the model system has 5 cases integrability by
quadratures if the following relations on its parameters are
satisfied

k0 =
C · k1 + 1

C
, k2 = −C · k1, k3 = 1.

Unfortunately, the coefficients in the real model must be positive,
so the requirement above is not feasible in reality. But this
example illustrates the possibility of finding exactly solvable cases
in dynamic models.
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Note, in many interesting cases the linear parts of ODEs of the
dynamical models can be reduced to Jordan form, but not to diagonal
form.

At present, the author is not aware of computer packages for
normalizing ODE systems with non-diagonalizable linear parts, but
appropriate formulas exist, see [Bruno 1979].

The author hopes to close this gap in the future. Then it will be
possible to significantly expand the range of search for integrable
cases of multidimensional systems.
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Conclusions

There is a empirical technique for searching for analytically
solvable cases of dynamical systems. This works both for the
case of resonance in the linear part of the system, and for the
general case.
There are many cases of integrability of multidimensional dynamic
systems. The corresponding exact solutions can be useful in
applications, for example, in bifurcation analysis of various
models.
To study the integrability of such systems, it is necessary to create
packages for reducing ODE systems with a Jordan matrix of the
linear part to the normal form.
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Many thanks for your attention
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