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Introduction

Study of the motion of major planets in the Solar System (and
other planetary systems)

Two interrelated directions.
The first is the representation of motion with the highest
possible accuracy on a short time scale (10− 103 years).

Numerical ephemerides (DE/LE, EPM, and INPOP).
Analytical ephemerides (VSOP).

The second is a qualitative description of the main properties
of motion on cosmogonic time scales (104 − 1010 years).

Numerical theories (Applegate et al., 1986; LONGSTOP
Project; Varadi et al., 2003; . . . ).
Symplectic theories (Ito and Tanikawa, 2002; Laskar . . . ).
Semi-analytical theories (Laskar . . . ).
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Introduction

Semi-Analytical Theories

The Gauss method (Davydov and Molchanov, 1971;
Vashkov’yak, 1981; . . . )

The Gauss averaging requires no expansions in powers of the
eccentricity or inclination.

R-rings and R-toroids (Kondratev and Kornoukhov, 2018;
2019; 2020; 2021; 2022; 2023; Kondratev et al., 2021).

Triple averaging of the motion of a material point and is
reduced to a chain of transformations: 1D Gaussian ring – 2D
R-ring – 3D R-toroid.
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Introduction

Semi-Analytical Theories

The Halphen–Goryachev method (Sukhotin, 1981, 1984;
Sukhotin and Kholshevnikov, 1986)

Doubly averaging the perturbing acceleration components over
two fast variables is made.
Its computed the mutual secular perturbations of the outer
planets over 800 kyr and of all nine planets over 200 kyr.

Numerical integration of the secular system (Laskar, 1984,
1985, 1986, 1988).

The real motion of the Solar system planets can be traced in
an interval of no more than 100 Myr.
The equations were integrated for 10 Gyr into the past and for
15 Gyr into the future.
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Long-Period Evolution of Two-Planetary Systems

The KAM theory (U.Locatelli and A.Giorgilli, 2000)
The Hamiltonian of the approximate secular model for the
Sun – Jupiter – Saturn system generates two invariant tori that
surround the orbits with Jupiter’s and Saturn’s initial data.
The orbits of Jupiter and Saturn are stable on an infinite time
scale.

The planar variant of the two-body problem in the absence of
mean-motion resonances (Henrard and Libert, 2005; Libert
and Henrard, 2005; 2007).

The solution is presented on the basis of the series by degrees
of eccentricities (order 12).
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Konstantin Kholshevnikov’s contribution to the study of the
Two-Planet Problem

The semi-analytical theory of motion of solar-type two-planetary
system

The Jacobi coordinate system
Independent variables are the quantities
ã = (a− a0)/a0 (a0 is a mean value of a),
e,
Ĩ = sin(I/2),
and the longitudes α = l + g + Ω, β = g + Ω, γ = Ω.

Longitudes and Ĩ = sin(I/2) improves the analytical
characteristics of the Hamiltonian and allowing to take
advantage of its D’Alembertian properties (Kholshevnikov and
Tublina, 1998).
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The semi-analytical theory of motion of two-planet system

Small parameter µ is the ratio of the mass of the planet to the
mass of the star.
Masses: m0 is the mass of the star, µm0m1, µm0m2 are the
masses of the planets,
For the Sun – Jupiter – Saturn: µ = 10−3, m1 ≈ 1, m2 ≈ 1/3.
Hamiltonian h = h0 + µh1

Unperturbed part of the Hamiltonian h0,
perturbed dimensionless part of the Hamiltonian h2

h0 = −Gm0m1

2a1
− Gm0m2

2a2
, h1 =

Gm0

a0
h2 .
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The semi-analytical theory of motion of two-planet system

The Expansion of the Hamiltonian of the Two-Planetary Problem
into a Poisson series in all elements

h2 =
∑

Aknx
k cos ny .

Akn are numerical coefficients;
x = {x1, . . . , x6} are positional variables;
y = {y1, . . . , y6} are angular variables;
k = {k1, . . . , k6}, n = {n1, . . . , n6} are multi-indexes;

Estimation and direct calculation of coefficients Akn

(Kholshevnikov et al., 2001; 2002)
The calculation of multiple integrals of elementary functions.
Summation limits.
Number of coefficients.

9/39 Analytical Methods of Celestial Mechanics 2024, August 19–24, 2024, St. Petersburg



Introduction 2-Planetary Problem 4-Planetary Problem 8-Planetary Problem Resonant Problem Conclusions

The semi-analytical theory of motion of a two-planet system

Summation limits and the number of coefficients N of the
Hamiltonian expansion depending on the order of the theory

Order ||k ||max |n3i−2|max N

2 6 13 4× 104

3 11 25 4× 106

4 16 37 8× 107

(Kholshevnikov et al., 2002):

”An increase in the speed of computers by 102 − 104 times to the
middle of the 21st century will permit the expansion coefficients to
be obtained with 6− 8 significant digits for one year of processor
time” [of one CPU for 50000 coefficients]
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The semi-analytical theory of motion of a two-planet system

Hamiltonian expansion with the Poisson Series Processor PSP
(Kuznetsov and Kholshevnikov, 2004)

Rational version of the Poisson Series Processor PSP (Ivanova,
1997).

The expansion of the Hamiltonian with numerical parameters
to µ3 for the Sun – Jupiter – Saturn-like system is constructed.

The parameters (masses of planets, mean values of semi-major
axes of orbits) are given by polynomial variables.
The expansion of the Hamiltonian with symbolic parameters to
µ2 is constructed.
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The semi-analytical theory of motion of a two-planet system

Construction of averaged equations of motion (Kuznetsov and
Kholshevnikov, 2006)

Non-canonical parameterization of Poisson brackets.
To perform the averaging operation, we apply the Hori –
Deprit method (the Lie transform method).
The method relies on Poisson brackets, which allows to turn
out from canonical elements.
To carry out the calculations, it is sufficient to express the
Poisson brackets in the system of phase variables needed by
the researcher (Boronenko, 1975; Bordovitsyna et al., 1991;
Kholshevnikov and Greb, 2001; Bordovitsyna and Avdyushev,
2007).

Averaging over fast variables.
Fast variables are the mean longitudes of the planets

Construction of variable change functions.
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The semi-analytical theory of motion of a two-planet system

Performing Lie transformations (Kuznetsov and Kholshevnikov,
2006)

Rational version of Echeloned Poisson Series Processor EPSP
(Ivanova, 2001).
A second improved approximation is constructed (in the
terminology of Krylov and Bogolyubov).

Constructed to µ3:
Averaged Hamiltonian H = H0 + µH1 + µ2H2 + µ3H3,
Generating function T = µT1 + µ2T2 + µ3T3,

H1 H2 H3 T1 T2 T3
414 8 168 9 717 60 672 1 044 513 858 311 terms

The right-hand sides of the averaged equations of motion.

Functions of change of variables is constructed to µ2.
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The semi-analytical theory of motion of a two-planet system

Orbital evolution of the two-planet system Sun – Jupiter – Saturn
on cosmogonic intervals (Kuznetsov and Kholshevnikov, 2006)

Numerical integration of equations of motion in averaged
elements over 10 Gyr.

The Runge–Kutta method of 11th order (Danilov, 2008) and
the Everhart method of 15th order (Everhart, 1974).
Range of variation of the averaged eccentricities e and
inclinations (with respect to the ecliptic plane) I of the orbits
of Jupiter and Saturn.

Jupiter Saturn
0.0170 6 e 6 0.0511 0.0195 6 e 6 0.0780
1.27◦ 6 I 6 2.00◦ 0.734◦ 6 I 6 2.53◦

The evolution of the orbital elements is almost periodic type.
Eccentricity and inclination values are separated from zero.
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The semi-analytical theory of motion of a two-planet system

The conservation of area integrals in averaging transformations
(Kuznetsov, 2009)

As proved (Poincaré, 1905; Charlier, 1966; Kholshevnikov,
1991) the area integral is conserved in the system defined by
the Hamiltonian H.

But the components σx and σy (unlike σz and the energy
integral E ) are not conserved in the system defined by the
finite segment of the Poisson series expansion of the averaged
Hamiltonian H.
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The semi-analytical theory of motion of a two-planet system

Stability of planetary systems with respect to masses
(Kholshevnikov and Kuznetsov, 2010)

Planetary masses m0
k were replaced by mk = χm0

k .
According to Nacozy (1976), the Sun – Jupiter – Saturn
system remains stable for 105 years up to χ = 29.
Sukhotin and Kholshevnikov (1986) used the
Halphen–Goriachev method obtained that the Sun – Jupiter –
Saturn system loses stability at χ ≈ 99.
The motion described by the averaged system is much more
stable than in the original system (Sukhotin and
Kholshevnikov, 1986).
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The semi-analytical theory of motion of a two-planet system

Averaging with return to osculating elements (Kholshevnikov
and Kuznetsov, 2010)

ξ1 = min[a2(1− e2)− a1(1+ e1)]

(average elements),

ξ2 = min[a2(1− e2)− a1(1+ e1)]

(osculating elements),

ξ3 = min |r2 − r1|,

% is radius of Jupiter’s sphere of

action with respect to the Sun.
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The semi-analytical theory of motion of a two-planet system

Stability of planetary systems with respect to masses
(Kholshevnikov and Kuznetsov, 2010)

The averaging with return to osculating elements gives a lower
bound for the critical value of χ = 19.
A numerical integration up to 1 Gyr gives the critical value
equal to χ = 22 (Kholshevnikov and Kuznetsov, 2010).

We can conclude that the averaging according to Gauss
scheme gives us results far from the real ones.
The averaging with return to osculating elements gives us
results in a qualitative agreement with the real ones.
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The semi-analytical theory of motion of a two-planet system

Resonances in planetary systems (Kuznetsov, 2010)

Narrow and wide resonance zones (Sokolov, 1980; Sokolov,
Kholshevnikov, 1981).
The width of the resonance zone in the case of narrow
resonance

∆a =
√
µb, b =

∑
nω=0

∣∣∣∣∣ Aknx
k

1.5κ2
2a
−5/2
2

∣∣∣∣∣ .
Akn are coefficients of the Poisson series representing the
variable change function for the semi-major axis a2.
Only the resonant terms are considered.
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The semi-analytical theory of motion of a two-planet system

Resonances in planetary systems (Kuznetsov, 2010)

For wide resonance, the size of the resonance zone is

∆a = µC + 2
√
µb, C =

∑
nω 6=0

∣∣∣Bknx
k
∣∣∣ .

Here Bkn are the coefficients of the echeloned Poisson series,
representing the variable change function for the semi-major
axis a2.
The non-resonant terms are treated as the sum of the moduli
of the amplitudes.

The coefficients of the variable change functions play a crucial
role in analyzing the resonance properties of planetary systems.
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The semi-analytical theory of motion of a two-planet system

Despite the relative simplicity of the two-planet problem, its
solution provided an opportunity to analyze a large number of
related problems.

In particular, the two-planet problem has served as a bridge
from studies of the dynamical evolution of the Solar System to
studies of the orbital evolution of exoplanet systems.
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The semi-analytical theory of motion of a four-planet system

The Jacobi coordinate system.
Independent variables are the elements of the second Poincare
system (canonical) — L = κM

√
a, eccentric elements ξ1, ξ2,

oblique elements η1, η2 and mean longitude λ.
Small parameter µ is the ratio of the sum of masses of the
planets to the mass of the star.
For the Sun – Jupiter – Saturn – Uranus – Neptune: µ = 10−3.
Unperturbed part of the Hamiltonian h0,
perturbed dimensionless part of the Hamiltonian h2, where
h0 and h2 are written similarly as h0 and h2 for two-planet
problem.

22/39 Analytical Methods of Celestial Mechanics 2024, August 19–24, 2024, St. Petersburg



Introduction 2-Planetary Problem 4-Planetary Problem 8-Planetary Problem Resonant Problem Conclusions

The semi-analytical theory of motion of a four-planet system

Hamiltonian expansion with the computer algebra system (CAS)
Piranha (developed by F. Biscani)

CAS Piranha is the echeloned Poisson series processor.
The expansion of the Hamiltonian is constructed up to µ3.
All variables are saved in the series expansion as symbolic. The
numerical coefficients are saved as the rational numbers with
arbitrary precision (Perminov and Kuznetsov, 2015).

n pmax dmax Nterms

1 6 60 36 853 938
2 4 20 6 017 416
3 3 15 6 314 479

n is the degree of µ, pmax is the
maximum power of eccentric and
oblique Poincare elements,
dmax is the maximum order of
Legendre polynomials.

The estimation accuracy of the Hamiltonian expansion is ∼ 10−12

(Perminov and Kuznetsov, 2020).
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The semi-analytical theory of motion of a four-planet system

Performing Lie transformations
CAS Piranha is used for the impementation of the Hori–Deprit
method.
A second approximaton (Perminov and Kuznetsov, 2016) and
a third approximation (2020) are constructed.

Constructed to µ3:
Averaged Hamiltonian H = H0 + µH1 + µ2H2 + µ3H3.
Generating function T = µT1 + µ2T2.

H1 H2 H3 T1 T2
pmax 6 4 2 6 2

Nterms 77 683 13 215 122 3 041 206 698 36 776 255 2 926 631 639

The right-hand sides of the averaged equations of motion.

Functions of change of variables is constructed to µ2.
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The semi-analytical theory of motion of a four-planet system

Orbital evolution of the four-planet system Sun – Jupiter –
Saturn – Uranus – Neptune (Perminov and Kuznetsov 2018, 2020)

Numerical integration of equations of motion in averaged
elements on cosmogonic time intervals.
The Everhart method of 15th order (Everhart, 1974) on time
interval 100 Myr and Gragg-Bulirsch-Stoer method of 12th

order (Avdyushev, 2015) on time interval 10 Gyr.
The limits of variation and the periods of the change of the
averaged orbital elements of the giant planets of the Solar
system are calculated and compared with other theories.
The evolution of the orbital elements is almost periodic type.
Eccentricity and inclination values are separated from zero.
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The semi-analytical theory of motion of a four-planet system
emin emax Imin,

◦ Imax , ◦ emin emax Imin,
◦ Imax , ◦

Jupiter Saturn
SA3 0.0208 0.0658 1.0922 2.0648 0.0099 0.0898 0.5532 2.6015
CS 0.0217 0.0651 1.0932 2.0616 0.0094 0.0875 0.5630 2.5978
WH 0.0251 0.0619 1.0936 2.0626 0.0093 0.0875 0.5616 2.5951

Uranus Neptune
SA3 0.0032 0.0750 0.3894 2.7676 0.0016 0.0169 0.7756 2.3769
CS 0.0025 0.0745 0.3756 2.7763 0.0014 0.0171 0.7748 2.3733
WH 0.0034 0.0737 0.3768 2.7751 0.0024 0.0161 0.7742 2.3733

Jupiter Saturn Uranus Neptune Jupiter Saturn Uranus Neptune
periods of orbital eccentricities, years periods of orbital inclinations, years

SA2 54 290 54 290 1 129 803 538 101, 364 896 49 213 49 213 432 965 1 876 305
SA3 54 688 54 688 1 136 388 537 416, 364 880 49 215 49 215 432 913 1 875 638
CS 54 693 54 693 1 133 548 534 230, 363 076 49 102 49 102 432 552 1 873 823
WH 54 747 54 747 1 134 679 534 765, 363 438 49 151 49 151 432 984 1 875 689
LA 54 060 54 060 1 117 240 535 100, 361 810 49 220 49 220 431 280 1 872 830

SA2 – the second order of the semi-analytical theory (Perminov and Kuznetsov, 2018),
SA3 – the third order of the semi-analytical theory (Perminov and Kuznetsov, 2020),
CS – Cowell–Stormer method from the program NBI (Goldstein, 1996; Varadi, 1999),
WH – Wisdom–Holman method from Rebound (Rein and Tamayo, 2015),
LA – Laskar’s secular theory (Laskar, 1990).
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The semi-analytical theory of motion of a four-planet system

The evolution of averaged
orbital eccentricities (top
figure) and inclinations
(bottom figure) of giant
planets of the Solar
system over time interval
2 Myr in the third order
approximation of the
semi-analytical motion
theory.
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The semi-analytical theory of motion of a four-planet system

The accuracy of the constructed semi-analytical four-planet motion
theory

The discrepancies between periods of the change of the orbital
inclinations obtained by numerical methods and semi-analytical
motion theory do not exceed 0.1% for all planets.
These same discrepancies for the orbital eccentricities of
Jupiter and Saturn are about 0.01%.
For Uranus and Neptune, these discrepancies for the orbital
eccentricities are not exceeded 0.3% and 0.6% correspondingly.
The discrepancies of the orbital eccentricities reach 1% in
comparison with the results of Laskar’s work.
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The orbital evolution of extrasolar planetary systems

Constructed theory of motion of the second order is used for the
investigation of the orbital evolution of extrasolar planetary systems
with moderate values of orbital eccentricities and inclinations.

Some orbital elements of extrasolar planetary systems are
known with some uncertainties or undetermined, due to the
specific limitations of the observing methods.
The orbital evolution of extrasolar planetary systems are
investigated by numerical integration of analitically
constructed equations of motion for various initial conditions.
The ranges of variation of the orbital elements can be
determined as a function of the initial conditions.
The assumption that the observed planetary systems are stable
can be used to exclude initial conditions leading to extreme
growth in the orbital eccentricities and inclinations.
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HD 39194, HD 141399, HD 160691 (Perminov, Kuznetsov, 2019)

All planets in these systems were detected via Doppler
spectroscopy.
HD 39194 has 3 super-Earths located within ≈ 0.24 AU
around the host star. Arguments of all periapsis are known.
HD 141399 – 4 Jupiter-like planets with a ∈ [0.415, 5] AU.
HD 160691 – 1 mini-Neptune and 3 Jupiter-like planets with
a ∈ [0.09, 5.235] AU.
Nominal values of eccentricities for all orbits are not exceed
0.26.
Values of all orbital inclinations and ascending nodes are
unknown from observations.
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The orbital evolution of extrasolar planetary systems

HD 39194, HD 141399, HD 160691 (Perminov, Kuznetsov, 2019)

The reference plane should be selected (for example, it can be
the orbital plane of the most massive planet in the system).
Initial values of I and Ω set to 0◦ for this planet.
The orbital inclinations of the remaining planets vary.
Different spatial configurations of the planets in their orbits
were achieved by varying both Ω and ω.
Estimates of the theoretical radii of convergence for orbital
eccentricities Re and inclinations RI should be calculated for
the series representing the equations of motion.
If e ≤ Re and I ≤ RI , this guarantees the convergence of the
series representing the equations of motion, and the suitability
of the theory of motion under the specified conditions.
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The orbital evolution of extrasolar planetary systems

GJ 3138 (Perminov, Kuznetsov, 2022)

Two super-Earths and one sub-Neptune orbiting around
GJ 3138 were discovered by Doppler spectroscopy.
Planetary system is compact – all semimajor axes < 0.7 AU.
Nominal values of orbital eccentricities of three planets are
0.19 (GJ 3138 c), 0.11 (b) and 0.32 (d).
Values of I , Ω and ω are unknown from observations and vary
for different initial conditions of modelling.
The reference plane is the orbital plane of the outermost
planet GJ 3138 d (the most massive planet).
The numerical integration of the equation of motion in
averaged elements is performed by Gragg–Bulirsch–Stoer
method of 7th order (Press et al. 2007) over 1 Myr.
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The orbital evolution of extrasolar planetary systems

An example of integration results. Maximum values of averaged orbital eccentricities
of planets GJ 3138 c (top left) and b (top right), averaged orbital inclinations of
planets GJ 3138 c (bottom left) and b (bottom right) for nominal initial values of
orbital eccentricities and initial inclinations of planets c and b are 15◦.
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The orbital evolution of extrasolar planetary systems

GJ 3138 (Perminov, Kuznetsov, 2022)

The results of semi-analytical theory of motion are compared
with direct numerical simulation, which is performed by
Wisdom–Holman method (Rein, Tamayo, 2015).
Chaotic properties are studied using MEGNO indicator.
The radii Re and RI are calculated.
If I ≥ 20◦, the initial conditions leading to Lidov–Kozai
resonance appears.
The maximum increase in the averaged orbital eccentricity:
GJ 3138 c – the condition (Ωb − Ωc) + (ωb − ωc) = 180◦.
GJ 3138 b – the condition (Ωb − Ωc) + (ωb − ωc) = 0◦.
The most probable values of the orbital eccentricities and
inclinations from the point of view of stability are identified.
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The orbital evolution of extrasolar planetary systems

Kepler-51 (Perminov, Kuznetsov, 2024 (in print))

Kepler-51 has 3 super-Earths located within ≈ 0.9 AU around
the host star. The values of orbital eccentricities are not
exceed ≈ 0.06. All planets were discovered by transit method
and orbital inclinations are not exceed 1◦.
The numerical integration of the equation of motion in
averaged elements is performed by Gragg–Bulirsch–Stoer
method of 7th order and the Posidonius software package
(Blanco-Cuaresma, Bolmont, 2017), taking into account tidal
interaction over 100 Myr for various initial conditions.
The study shows that the compact planetary system Kepler-51
is not resonant and its orbital evolution is stable over time
interval of 100 Myr.
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The semi-analytical theory of motion of 8-planet system

According to the exoplanet.eu database, 24 five-planet
systems, 11 six-planet systems, 5 seven-planet systems and 1
eight-planet extrasolar system Kepler-90 have been discovered
to date.
At present, the authors are constructing an eight-planet
semi-analytical theory of motion.
Jacobi coordinate system and the second system of Poincare
elements are used.
The osculating Hamiltonian is constructed up to µ3.
The averaged Hamiltonian and the equation of motion in
averaged elements will be construct up to µ3.
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The resonant semi-analytical theory of motion

Jupiter and Saturn are close to 2:5 mean motion resonance;
2νJ − 2νS ≈ −1 · 10−5.
Uranus and Neptune are close to 1:2 mean motion resonance;
νU − 2νN ≈ −4 · 10−6.
Neptune and Pluto – mean motion resonance 2:3;
2νN − 3νP ≈ 6 · 10−7.
Many extrasolar systems with planets in the vicinity of MMR.
At present, the authors are constructing a resonant four-planet
semi-analytical theory of motion.
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The resonant semi-analytical theory of motion

Canonical change of variables
Jacobi coordinate system and the second system of Poincare
elements are used.
In the case of mean motion resonance kn : km between planets
n and m the canonical change of variables is used

L
′
n =

1
kn

Ln, λ
′
nm = knλn − kmλm,

L
′
m =

km
kn

Ln + Lm, λ
′
m = λm.

Here λnm is the critical argument of the resonance (this new
variable is slow in the vicinity of the resonance).
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Conclusions

Productive ideas on the development of the semi-analytical theory
of the N-planet problem laid down by Professor Konstantin
Kholshevnikov continue to be realized in new versions of the
theory, bringing new scientific results.

The study was supported by the Russian Ministry of Science and
Higher Education via the State Assignment Project
FEUZ-2020-0038.

Thank you for your attention!
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