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Abstract. Approaches to constructing finite-point approximations of the grav-
itational fields of celestial bodies with complex shapes that are far from spher-
ical are discussed. The study shows good agreement between the parameters
of body mass distribution models obtained using both the K-means method
and a system of balls with centers on a straight line.

Introduction
In modern celestial mechanics, a lot of attention is paid to the study of motion
in the vicinity of small celestial bodies, in particular, asteroids and comets. The
actuality of the related issues is provided by the intensification of research in
connection with the problem of asteroid danger, as well as with the design and
implementation of missions to work both in the vicinity of such celestial bodies
and on their surface.

As is known (see, e.g., [1, 2, 3, 4, 5, 6]), celestial mechanics relies on the
development of the potential energy of Newton’s gravitational attraction into a
series. Such a development is based on a natural small parameter, expressing the
ratio of the characteristic sizes of the attracting bodies to the distance between
them. The second-order truncation is usually sufficient to accurately describe and
predict the dominant dynamic effects of mutual attraction. However, numerous
small celestial bodies are of a complex shape. At the same time, many small ce-
lestial bodies have a rather complex shape. The correct description of the fields of
attraction generated by them requires the use of higher approximations. Currently,
the so-called Werner-Scheeres approach is of the most widely used. Its main pro-
visions of which are set out in publications [7, 8]. The Werner-Scheeres approach
is effective for numerical calculations in the case when a celestial body is assumed
to be homogeneous or, more generally, such a body can be represented as a set of
homogeneous disjoint components. Assuming that the surface of a small celestial
body is defined by a triangulation grid, the Werner-Scheeres method allows us
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to represent its potential of attraction as the sum of the potentials of individual
tetrahedra, with a common vertex and bases in the triangulation cells. This sum
consists of a large number of terms. In an order this number is comparable to the
number of elements of the graph defining the triangulation grid. It is clear that
such an approximation is essentially unsuitable for a preliminary analytical study
of motion in the vicinity of a small celestial body. In this regard, the problem
of constructing a system of equigravitating bodies seems being very important.
For such a system, the components of the Euler-Poinsot tensor, otherwise known
as inertia integrals, must coincide with the corresponding components of such a
tensor for the initial body for the highest possible order.

The problem of the approximation of the field of attraction of a celestial body
by the field of attraction of a set of “elementary” bodies is the subject of this study.
The goal is to find such approximate configurations for which the components of
the Euler-Poinsot tensor will coincide with the corresponding components for the
initial body not only for the second, but also for a higher order. The results ob-
tained are compared with the results obtained earlier using the K-means method,
applied in conditions where the assumptions of the Werner — Scheeres theorem
on the approximation of the potential of a body are valid. As examples, models of
a number of small celestial bodies are considered.

1. On K-means method
H. Steinhaus [9] proposed a novel approach to dividing sets of points into non-
overlapping groups, which is widely used in the field of pattern recognition. Let
A be a set of a finite number of points located in three-dimensional Euclidean
space in some way. Let A1, . . ., Ak be disjoint subsets of A such that their union
is exactly equal to A:

A = A1 ∪ · · · ∪Ak, Ai ∩Aj = 0, i ̸= j. (1)

Let S1, . . ., Sk be the centroids of these subsets and ρij = |SiSj | be the pair-
wise distance between them. Let us denote ρ = min

i ̸=j
ρij as the minimum distance

between centroids.
According to Steinhaus [9], we are looking for a partition of the set A that

satisfies the requirements (1) such that the minimum distance between the cen-
troids of the subsets is maximised: ρ⋆ = max

A
ρ. If such a partition exists, it is said

that the subsets in the partition are “as far apart as possible”. Since the iteration
is finite, there is at least one partition of A into disjoint subsets that achieves the
maximum ρ⋆, and this partition is not necessarily unique.

Lloyd [10] proposed an iterative algorithm that approximates ρ⋆. The algo-
rithm never repeats splitting, and it is guaranteed to converge, see, e.g., [10, 11].

Suppose that the surface of a body can be represented as a polyhedron, which
consists of a given set of vertices and a set of triangular faces that are consistently
oriented. The application of the Steinhaus approach and Lloyd’s algorithm to
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the centroids of these tetrahedra equipped with corresponding oriented volumes
([12]) made it possible to construct two-, three- and four-point approximations
for asteroids (2063) Bacchus, (216) Kleopatra, (433) Eros, (1620) Geographos and
comet (67P) Churyumov-Gerasimenko [13, 14, 15]

2. Comparison with finite-point approximations obtained otherwise

According to [14], the K-means method defines a triple of points P ′
1, P ′

2 and P ′
3

with masses m′
1 = 2.001 · 1015, m′

2 = 2.608 · 1015 and m′
3 = 2.057 · 1015 kg,

respectively. At the same time |P ′
1P

′
3| = 17.983, |P ′

2P
′
3| = 9.897, |P ′

1P
′
2| = 8.783.

The triangle ∆P ′
1P

′
2P

′
3 is obtuse, with an obtuse angle ∠P ′

1P
′
2P

′
3 = 2.592524415

rad, close to the straight one.
On the other hand, the Grebenikov-Demin-Aksenov method (see, e.g., [16])

gives a triple of collinear points P1, P2 and P3 with masses m1 = 1.656 · 1015 kg,
m2 = 2.696 · 1015 kg and m3 = 2.313 · 1015 kg. At the same time |P1P3| = 19.896
km, |P2P3| = 10.312 km, |P ′

1P
′
2| = 9.584 km.

Mass discrepancies amounting to

|m1 −m′
1|

min(m1,m′
1)

≈ 0.2083,
|m2 −m′

2|
min(m2,m′

2)
≈ 0.0337,

|m3 −m′
3|

min(m3,m′
3)

≈ 0.1245,

does not exceed 21 percent.
Similarly calculated differences in distances amounting to

δ12 ≈ 0.106, δ23 ≈ 0.042, δ13 ≈ 0.091, δij =

∣∣|P ′
iP

′
j | − |PiPj |

∣∣
min(|P ′

iP
′
j |, |PiPj |)

,

does not exceed 11 percent.
It remains to be noted that Steinhaus’ approach is purely geometric. Its use

does not imply at least some knowledge about the gravitational potential of the
studied celestial body.

The study shows a good agreement between the parameters of body mass
distribution models obtained using both the K-means method and a system of
balls placed along a straight line.
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