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Abstract. A technique of Conley–Zehnder indices is applied for investigation
of interconnections of the basic families of periodic orbits with maximal num-
bers of symmetries of the well-known Hill problem. These basic families are g,
f – families of planar direct and retrograde periodic orbits, and B0 – family of
rectilinear vertical consecutive collision orbits. The relations among families
of periodic orbits are provided by families of spatial symmetric periodic or-
bits which makes k-covering at the bifurcation points. All the families form a
common network and can be represented as well-organized bifurcation graphs
of the interconnectedness.

Introduction

1. Circular Hill Problem, its symmetries and basic families
The Hill three-body problem (Hill3BP), a limiting case of the circular restricted
three-body problem (RTBP), is a well-known model which provides an approx-
imation of the dynamics of the infinitesimal body in the vicinity of the smaller
primary. In its original application, George Hill reformulated the lunar theory and
discovered a periodic solution with period equal to the synodic month of the Moon.
There are a lot of applications of Hill’s approach such as capturing in the dynamics
of natural or artificial satellites, distant moons of asteroids, low-energy escaping
trajectories, frozen orbits around planetary satellites. Hill3BP problem’s periodic
solution can be continued to RTBP or even into three-body problem solutions and
thus can be used in astrodynamical projects.

Hill3BP problem Hamiltonian

H(x, y, z, px, py, pz) =
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)
− 1

r
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)
, (1)

where r =
√
x2 + y2 + z2, consists of the rotating Kepler problem Hamiltonian

with a velocity independent gravitational perturbation produced by the massive



2 Cengiz Aydin and Alexander Batkhin

primary (the quadratic form of x, y, z). This difference between the rotating Kepler
problem and Hill3BP system gives a dramatic dynamical change. While the rotat-
ing Kepler problem is an integrable system, the Hill 3BP is non-integrable. Equa-
tions of motion derived from (1) are invariant under discrete group Z2 × Z2 × Z2

of symplectic (anti-symplectic) symmetries ρ of the extended phase space:

ρ(α, β, γ) : (t, x, y, z, px, py, pz) → (αt, βx, αβy, γz, αβpx, βpy, αγpz), (2)

where α, β, γ ∈ {+1,−1}. So all solutions to the Hill3BP can be divided into groups
with different number of symmetries (2). The symmetry of a periodic solution plays
an essential role, since it allows one to investigate it numerically for only parts of
the period.

There are 3 families, called basic families, whose orbits are simple and have
the largest number of symmetries: g and f are families of planar direct and ret-
rograde satellite orbits [4] and B0 is a family of vertical collision orbits [5]. The
last one consists of two branches called B+

0 and B−
0 for upper and lower coordinate

subspaces correspondingly. Other important families are Lypunov families a and
c emanating from the librations points L1 and L2 and family g′ appeared after
symmetry breaking bifurcation of the family g [4]. It was shown in [3] that all these
families are connected to each other by families of spatial periodic orbits and form
a kind of common network. Current work significantly extends these results by
systematically applying the technique of Conley–Zehnder indices.

2. On Conley–Zehnder indices µCZ of periodic solution
The Conley–Zehnder index µCZ assigns a mean winding number to non-degenerate
periodic orbits, which stays constant until a bifurcation point is achieved. In its
formal definition, the index µCZ is associated with a path of symplectic matri-
ces generated by the linearized flow along the whole orbit. This path starts at the
identity and ends at the reduced monodromy matrix whose Floquet multipliers are
different from 1 due to the non-degeneracy of the orbit. The index µCZ measures
the twisting of this symplectic path by counting the number of crossing the eigen-
value 1. If the orbit becomes degenerate, i.e., 1 is among its Floquet multipliers,
then bifurcation appears and the index jumps according to direction of crossing
the eigenvalue 1. For instance, if a pair of elliptic Floquet multipliers in the form
e±iθ becomes positive hyperbolic, then the corresponding index jump depends on
whether the eigenvalue 1 is crossed from above (i.e., by eiθ) or from below (i.e.,
by e−iθ). In one case the index jumps down and in the other case the index jumps
up. In order to determine this direction of crossing the eigenvalue 1 we consider
the Krein signature (especially its version for symmetric periodic orbits) which
specifies the direction of the rotation and thereby the index jump.

When working locally near a family of non-degenerate periodic orbits, then
there is a fascinating bifurcation-invariant: the local Floer homology and thus its
Euler characteristic, the alternating sum of the ranks of the local Floer homology
groups. Significantly, the index leads to a grading on local Floer homology and
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thus, the index provides important information how different families are related
to each other before and after bifurcation.

We use these symplectic invariants to construct bifurcation graphs in the
same way as introduced in [2], where networks of families of symmetric spatial
periodic orbits associated to g, g′ and f , and their multiple cover bifurcations,
were demonstrated. A “bifurcation graph” is a labelled graph, whose vertices cor-
respond to bifurcation points and whose edges correspond to families of periodic
orbits, labelled with their Conley–Zehnder index (see Figure 1 for an example).
This approach provides additional structure to the families of periodic orbits and
supports to examine their connections at bifurcation points from a topological
point of view. In particular, this allows to check at every bifurcation point the Eu-
ler characteristics before and after bifurcation 1. In case the Euler characteristics
do not coincide, then there are still undiscovered families at this bifurcation point.

Instead of using the formal definition to determine the indices, we follow
the approach developed in [1, 2], in which the indices are known via analytical
considerations in view of the origin of the families. For very low energies, the
regularized Kepler problem is the source of the families g, f and B±

0 . Notice that
planar orbits have planar and spatial indices, µp

CZ and µs
CZ . It was shown [1] that

their indices are given by

µCZ =


6 = µp

CZ + µs
CZ = 3 + 3 for family g

4 for family B±
0

2 = µp
CZ + µs

CZ = 1 + 1 for family f.

We start with these indices, continue those families for higher energies, follow
their Floquet multipliers together with corresponding Krein signatures, examine
the interaction of µCZ with bifurcation points and construct bifurcation graphs,
such as shown in Figure 1.

3. Interconnections between the basic families

The purpose in our study is to provide bifurcation graphs showing rich connections
between basic families of periodic orbits and their bifurcations. To be emphasized
is that our investigations show the following structures of bifurcation results of
families of spatial orbits in each row (in each row the integer n indicates each n-th
cover bifurcation of the underlying family in the first row):

g g′ B±
0 f f3 halo

1 2
1 2
2 2 3
3 3 4 5 1
4 4 5 6 2
5 6 7
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Figure 1. Left top: Bifurcation graph associated to connection
between g′ and double cover of halo orbit (denoted by halo2).
Corresponding orbits start bottom left, then right, then up.

As a consequence, we have discovered connections at bifurcation points be-
tween n-th cover of the families g, n + 1-th cover of B±

0 and n + 2-th cover of
f , for n = 3, 4, 5. Such pattern can be expected in view of their Conley–Zehnder
indices, which play a significant role in this paper. In particular, this work aims to
demonstrate that the technique of such symplectic invariants supports to deduce
such connections at bifurcation points which are hard to see by bare computations.

One example of a bifurcation graph is shown in Figure 1, which shows the
connection in the first row from the previous overview, i.e., between g′ and double
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cover of halo orbits. Let us verify that the corresponding bifurcation points in Fig-
ure 1 are in accordance with the Euler characteristics before and after bifurcation.
At Γ = 3.390159 the Euler characteristics before and after bifurcation are

(−1)6 = 1, 2 · (−1)6 + (−1)7 = 1.

At Γ = 1.095146 the Euler characteristics are (−1)6 = 1 before and after bifurca-
tion. Notice that the index 7 indicates bad orbits, which are ignored in the local
Floer homology and not counted.
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