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Abstract

A technique of Conley–Zehnder indices is applied for investigation of interconnections of the basic families
of periodic orbits with maximal numbers of symmetries of the well-known Hill problem. These basic
families are 𝑔, 𝑓 – families of planar direct and retrograde periodic orbits, and ℬ0 – family of rectilinear
vertical consecutive collision orbits. The relations among families of periodic orbits are provided by
families of spatial symmetric periodic orbits which makes 𝑘-covering at the bifurcation points. All the
families form a common network and can be represented as well-organized bifurcation graphs of the
interconnectedness.
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Hierarchy of celestial-mechanical problems

𝑁 -body problem

Keplerian problem 3-body problem

Restricted 3-body problem (RTBP)

Circular RTBP

Copenhagen problem Hill problem(HP)

Elliptic RTBP

Elliptic HP



Circular Hill Problem, its symmetries and basic families

Circular Hill Proble

The Hill three-body problem (Hill3BP), a lim-
iting case of the circular restricted three-body
problem (CR3BP), is a well-known model which
provides an approximation of the dynamics of the
infinitesimal body in the vicinity of the smaller
primary.

The remaining primary is pushed infinitely far
away in a way that it acts as a velocity indepen-
dent gravitational perturbation of the rotating
Kepler problem formed by the smaller primary
and the infinitesimal body.
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Circular Hill Problem, its symmetries and basic families

Applications of the Hill3BP

In its original application, George Hill reformulated the lunar theory and discovered a periodic
solution with period equal to the synodic month of the Moon.

Main applications of Hill’s approach such as
capturing in the dynamics of natural or artificial satellites,
distant moons of asteroids,
low-energy escaping trajectories,
frozen orbits around planetary satellites.

Hill3BP problem’s periodic solution can be continued to CR3BP or even into three-body problem
solutions and thus can be used in astrodynamical projects.
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Circular Hill Problem, its symmetries and basic families

Hamiltonian of the Hill3BP

The Hamiltonian form of the CR3BP is

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1

2

(︀
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)︀
− 1− 𝜇

𝑟1
− 𝜇

𝑟2
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥,

which has an equivalent Jacobi integral defined by Γ = −2𝐻.

For 𝜇 ≪ 1, the smaller primary is shifted to the origin, making blowing-up of coordinates by a
factor 𝜇1/3 and after tending 𝜇 → 0 getting Hill3BP problem Hamiltonian

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1

2

(︀
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)︀
− 1

𝑟
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥− 𝑥2 +

1

2

(︀
𝑦2 + 𝑧2

)︀
. (1)

It consists of the rotating Kepler problem Hamiltonian with a gravitational perturbation produced
by the massive primary. This difference between the rotating Kepler problem and Hill3BP system
gives a dramatic dynamical change, turning the Hill3BP a non-integrable.
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Circular Hill Problem, its symmetries and basic families

Symmetries

Equations of motion derived from (1) are invariant under discrete group Z2×Z2×Z2 of symplectic
(anti-symplectic) symmetries 𝜌 of the extended phase space:

𝜌𝛼𝛽𝛾 : (𝑡, 𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) → (𝛼𝑡, 𝛽𝑥, 𝛼𝛽𝑦, 𝛾𝑧, 𝛼𝛽𝑝𝑥, 𝛽𝑝𝑦, 𝛼𝛾𝑝𝑧), (1)

where 𝛼, 𝛽, 𝛾 ∈ {+1,−1}. So all solutions to the Hill3BP can be divided into groups with
different number of symmetries (1).

The symmetry of a periodic solution plays an essential role in understanding dynamics of the
problem.
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Circular Hill Problem, its symmetries and basic families

Basic families of periodic solutions

Conjecture
Families of orbits with maximal num-
ber of symmetries form a kind of back-
bone for a network of periodic solution
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Basic families of periodic solutions

Conjecture
Families of orbits with maximal num-
ber of symmetries form a kind of back-
bone for a network of periodic solution

Three basic families, whose orbits
are simple and have the largest num-
ber of symmetries:

𝑔 and 𝑓 are families of pla-
nar direct and retrograde satel-
lite [Hénon, 1969],
ℬ0 is a family of vertical collision
orbits [Lidov, 1982]
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Circular Hill Problem, its symmetries and basic families

Basic families of periodic solutions

Conjecture
Families of orbits with maximal num-
ber of symmetries form a kind of back-
bone for a network of periodic solution

Other important families are
Lyapunov families 𝑎 (𝑐) ema-
nating from 𝐿1 (𝐿2)

family 𝑔′ appeared after symmetry
breaking bifurcation of 𝑔
family 𝑓3 gives twice 3-covering of
the family 𝑓

Lyapunov eight-form spatial fam-
ily
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Circular Hill Problem, its symmetries and basic families

Goal of the work

It was shown in [A. B. Batkhin,
Batkhina, 2009] that all these families
are connected to each other by fami-
lies of spatial periodic orbits and form
a kind of common network.

Current work significantly extends
these results by systematically apply-
ing the technique of symplectic in-
variants.

L2 M2 L1

alib a B+
0 B−0 c clib

a3v a2v a1v(c1v) c2v c3v

g f

g′

gXOZ
1v gYOZ

1v
g2v g

1/3
v (f

1/5
v )

g′5v g′4v g′3v g′2v
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On symplectic invariants

On symplectic invariants

Conley–Zehnder index 𝜇𝐶𝑍 of periodic orbits
Krein signature
Local Floer homology and its Euler characteristic (bifurcation-invariant)

C. Aydin, A. Batkhin (Heidelberg, Technion) Network of spatial periodic solutions 20-08-2024 13 / 33



On symplectic invariants

Conley–Zehnder index 𝜇𝐶𝑍 of periodic orbits

The Conley–Zehnder index [Conley, Zehnder, 1984], [Salamon, Zehnder, 1992] assigns a
mean winding number to non-degenerate periodic orbits, defined in terms of a path of
symplectic matrices Ψ(𝑡) generated by the linearized flow along the whole periodic orbit
(transverse to the direction of the Hamiltonian vector field).
This symplectic path Ψ(𝑡) starts at the identity and ends at the reduced monodromy.
The set of symplectic matrices with eigenvalue 1 is called “Maslov cycle”, which
corresponds to the space of reduced monodromies that are degenerate. 𝜇𝐶𝑍 measures the
twisting of the symplectic path Ψ(𝑡) by counting the number of crossing the Maslov cycle
that lies between the starting point of a periodic orbit and its end point.
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On symplectic invariants

𝜇𝐶𝑍 of planar periodic orbits in the planar system

Let 𝜉𝑛 be the 𝑛-times iteration of a planar orbit 𝜉. Assume that 𝜉𝑛 is non-degenerate for
all 𝑛 ⩾ 1. The reduced monodromy of 𝜉𝑛 is an element of 𝑆𝑝(2) = 𝑆𝐿(2,R).
Elliptic case. The Floquet multipliers are of the form 𝑒±𝑖𝑛𝜃 and the reduced monodromy

is conjugate to a rotation in R2 of the form
(︂
cos𝑛𝜃 − sin𝑛𝜃
sin𝑛𝜃 cos𝑛𝜃

)︂
. In particular,

𝜇𝐶𝑍(𝜉
𝑛) = 1 + 2 · ⌊𝑛 · 𝜃/(2𝜋)⌋ =: 1 + 2 · rot(𝜉𝑛).

Hyperbolic case. The Floquet multipliers are positive or negative real and of the form 𝜆
and 1/𝜆. Then the corresponding eigenvectors are rotated by 𝑚𝜋 for an integer 𝑚, and

𝜇𝐶𝑍(𝜉
𝑛) = 𝑛𝑚, 𝑚 ∈

{︃
2Z for the pos. hyperbolic case
2Z+ 1 for the neg. hyperbolic case.
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On symplectic invariants

Index jump at bifurcation point

The index is constant along an orbit cylinder, parametrized by the energy. If a periodic orbit
becomes degenerate, bifurcation occurs and the index jumps according to direction of crossing
the eigenvalue 1.

0 1−1

µCZ −1

µCZ +1

from elliptic to positive hyperbolic

0 1−1

µCZ +1

µCZ −1

from positive hyperbolic to elliptic

Natural question to ponder:

“How to determine the direction of crossing the eigenvalue 1?”
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On symplectic invariants

Krein signature

The classical Krein signature [Arnold, Avez, 1968] associates a ± sign to each pair of
elliptic Floquet multipliers of the form 𝑒±𝑖𝜃. We use the Krein signature for symmetric
periodic orbits that was constructed in [Frauenfelder, Moreno, 2023], which assigns a ±
sign to each elliptic and hyperbolic Floquet multiplier, and coincides with the classical one
in the elliptic case.
This signature is invariant under the choice of the symplectic basis to write down the
(reduced) monodromy matrix.
Especially, it determines the direction of the rotation, meaning that if the rotation is
determined by +𝜃 or −𝜃. Therefore, the Krein signature specifies the direction of crossing
the eigenvalue 1 and thereby the index jump.
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On symplectic invariants

Determination of Conley–Zehnder indices

Instead of using directly the formal definition, we determine the index by studying analytically
the origin of the natural families of periodic orbits, continue those families for higher energies
and study their interaction at bifurcation points as described before.
Planar periodic orbits in the spatial system has planar and spatial Floquet multipliers, and
planar and spatial Conley–Zehnder indices.
For very low energies, the regularized Kepler problem is the source of the families 𝑔, 𝑓 and
ℬ±
0 . It was shown in [Aydin, 2023a] that for very low energies, their indices are given by

𝜇𝐶𝑍 =

⎧⎪⎨⎪⎩
6 = 𝜇𝑝

𝐶𝑍 + 𝜇𝑠
𝐶𝑍 = 3 + 3 for 𝑔

4 for ℬ±
0

2 = 𝜇𝑝
𝐶𝑍 + 𝜇𝑠

𝐶𝑍 = 1 + 1 for 𝑓.

Jump of planar index generates planar-to-planar bifurcation,
and jump of spatial index generates planar-to-spatial bifur-
cation.

x

y
z

direct
(family g)

retrograde
(family f )

B+
0

B−
0
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On symplectic invariants

Conley–Zehnder indices of planar and vertical Lyapunov orbits

It is well-known that the analysis of the linear behavior of the flow around collinear
Lagrange points is of the type saddle × center × center.
The planar and vertical frequencies 𝜔𝑝 and 𝜔𝑣, related to both centers, satisfy

𝜔𝑣 < 𝜔𝑝 < 2𝜔𝑣.

Therefore, in the vicinity of the collinear Lagrange points it holds that

𝜇𝐶𝑍 =

{︃
3 = 𝜇𝑝

𝐶𝑍 + 𝜇𝑠
𝐶𝑍 = 2 + 1 for the family of planar Lyapunov orbits

5 for the family of vertical Lyapunov orbits.
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On symplectic invariants

Local Floer homology and its Euler characteristic (bifurcation-invariant)

Euler characteristic of closed surfaces equals 𝑉 − 𝐸 + 𝐹 in a triangulation (topological
invariant).

dimension 0 1 2
𝑉 𝐸 𝐹

For the sphere:
𝑉 − 𝐸 + 𝐹 = 2

More generally, for any topological space, the Euler characteristic is defined as the alternating
sum of the rank of the (singular) homology groups.
Local Floer homology. The Conley–Zehnder index leads to a grading on local Floer homol-
ogy. Fascinatingly, the local Floer homology and its Euler characteristic stay invariant under
bifurcation points [Ginzburg, 2010]. Thus, the index provides important information
how different families are related to each other at bifurcation points.
“Bad orbits” (notation from SFT) do not count to the local Floer homology. They appear
as even covers of periodic orbits with exactly one pair of neg. hyperb. Floquet multipliers.
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On symplectic invariants

Astronomical significance of Conley–Zehnder indices

The period of Hill’s lunar orbit corresponds to the synodic month,
which is around 29.5305 days. Planar and spatial elliptic Floquet
multipliers are

𝑒±𝑖𝜃𝑝 , 𝜃𝑝 = 0.450390, 𝑒±𝑖𝜃𝑠 , 𝜃𝑠 = 0.534613.

It was shown in [Aydin, 2023a] that the anomalistic and draconitic
months can be expressed in terms of the CZ indices and rotation
angles. The indices associated to Hill’s lunar orbit are

𝜇𝑝
𝐶𝑍 = 𝜇𝑠

𝐶𝑍 = 3, rot𝑝 = rot𝑠 = 1.

Krein signatures of elliptic Floquet multipliers indicate that each rotation is determined by +𝜃𝑝
and +𝜃𝑠. The computation of the time for a planar and spatial rotation during one synodic month
yields 27.5529 days (anomalistic month) and 27.2126 days (draconitic month). Knowledge of
these lunar months date back to the Babylonians until around 500 BCE.
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Interconnections between the basic families
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Interconnections between the basic families

Summary of investigations

We provide bifurcation graphs illustrated a common network in association to the natural families
of periodic orbits and their bifurcations, based on the technique of symplectic invariants.

To be emphasized is that our investigations show
the following structures of bifurcation results of
families of spatial orbits in each row.

𝑔′ 𝑔 ℬ±
0 𝑓 𝑓3 halo

1 2
1 2

2 2 3
3 3 4 5 1
4 4 5 6 2

5 6 7
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Interconnections between the basic families

Bifurcation graph associated to 𝑔 and 𝑔′

Euler characteristics (with respect to planar indices) before and after bifurcation are

(−1)3 = −1, (−1)2 + 2 · (−1)3 = −1.
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Interconnections between the basic families

Connection between 𝑔 and double cover of ℬ±
0

At Γ = 1.383093 the spatial index of 𝑔-
orbits jumps from 3 to 4 (planar index is 2).
The continuation of the new branch of spa-
tial orbits terminates, after an index jump
at Γ = −0.072698, at the double cover of
ℬ±
0 at Γ = −0.182001.

Notice that 5 indicates bad orbits, which are
ignored in the local Floer homology and not
counted.
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Interconnections between the basic families

Connection between 𝑔′ and double cover of halo orbits

Next result shows the connection between 𝑔′ and dou-
ble cover of halo orbits. Verification of bifurcation
points:

At Γ = 3.390159 the Euler characteristics be-
fore and after bifurcation are (−1)6 = 1 and
2 · (−1)6 + (−1)7 = 1.
At Γ = 1.095146 the Euler characteristics are
(−1)6 = 1 before and after bifurcation. No-
tice that the index 7 indicates bad orbits, which
are ignored in the local Floer homology and not
counted.
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

Here connections formed by spatial orbits that bifur-
cate from

triple cover of 𝑔 and 𝑔′,
fourth cover of ℬ±

0 ,
fifth cover of 𝑓 and
simple cover of f3.

The corresponding bifurcation graph is illustrated in
Figure.
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

At Γ = 3.876616 𝜇𝐶𝑍 of its triple cover jumps from
13 to 15 (the planar index is 6 and the spatial index
jumps from 7 to 9). From the triple cover there bi-
furcates two families of spatial orbits, one has index
14 (blue family) and one has index 13 (green family).
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

At Γ = 3.876616 𝜇𝐶𝑍 of its triple cover jumps from
13 to 15 (the planar index is 6 and the spatial index
jumps from 7 to 9). From the triple cover there bi-
furcates two families of spatial orbits, one has index
14 (blue family) and one has index 13 (green family).
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

The orbits of the blue family are doubly symmetric
with respect to the 𝑂𝑋-plane and 𝑂𝑌 -plane, and
they terminate at Γ = 0.755141 corresponding to
fifth cover spatial bifurcation of 𝑓 where the index
jumps from 16 to 14. The blue orbits undergo an
index jump from 14 to 15 at Γ = 3.274118.
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

The green orbits are doubly symmetric with respect
to the 𝑋𝑂𝑍-axis and 𝑌 𝑂𝑍-axis. Our studies in the
regularized problem show that this collision point cor-
responds to a branch that bifurcate from fourth cover
of ℬ±

0 (where the index jumps from 16 to 14). Fur-
thermore, the green orbits make an index jump from
13 to 14 at Γ = 3.280180, and then they undergo two
times a birth-death bifurcation, first at Γ = 3.136701
and second at Γ = 3.362152.
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

At Γ = 4.347942 the triple cover of 𝑔′ generates
two families of spatial orbits (red and purple family).
At this bifurcation point the index jumps from 14 to
16, and the red family has index 15 (orbits are sim-
ple symmetric with respect to the 𝑂𝑋-axis) and the
purple family has index 14 (orbits are simple symmet-
ric with respect to the 𝑂𝑌 -axis). It was investigated
in [Aydin, 2023b], by using the indices and symme-
try properties, that red family meets blue family and
purple family meets green family (note that by pure
computation of red and purple family, one starts at
𝑔′ and terminates at its symmetric 𝑔′ orbit).
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

At Γ = 4.347942 the triple cover of 𝑔′ generates
two families of spatial orbits (red and purple family).
At this bifurcation point the index jumps from 14 to
16, and the red family has index 15 (orbits are sim-
ple symmetric with respect to the 𝑂𝑋-axis) and the
purple family has index 14 (orbits are simple symmet-
ric with respect to the 𝑂𝑌 -axis). It was investigated
in [Aydin, 2023b], by using the indices and symme-
try properties, that red family meets blue family and
purple family meets green family (note that by pure
computation of red and purple family, one starts at
𝑔′ and terminates at its symmetric 𝑔′ orbit).
Some red and purple orbits are plotted in Figure to
the right.
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

At Γ = 2.146632 a branch of spatial orbits bifur-
cation from f3 terminates at Γ = 0.755141 at fifth
cover of 𝑓 . This branch is the orange family in Figure
27, which undergoes two birth-death bifurcations and
several index jumps in between.
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

At Γ = 2.146632 a branch of spatial orbits bifur-
cation from f3 terminates at Γ = 0.755141 at fifth
cover of 𝑓 . This branch is the orange family in Figure
27, which undergoes two birth-death bifurcations and
several index jumps in between.
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Interconnections between the basic families

Bifurcation graph between 𝑔, 𝑔′, ℬ±
0 , 𝑓 , and f3

As a conclusion, the part of the network related to
blue, green (without ℬ±

0 ), red and purple family was
already constructed in [Aydin, 2023b], based on com-
putations from [Kalantonis, 2020]. We completed this
network by exploring the families ℬ±

0 and f3 and their
relations at bifurcation points.
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Conclusion

Conclusion

Based on symplectic invariants, we provide bifurcation graphs illustrated a common network
in association to the natural families of periodic orbits and their bifurcations. A full description
of our results [Aydin, A. Batkhin, 2024] is in progress.

We have presented some of the structures of bifurcation
results of families of spatial orbits. In particular, such pat-
tern can be expected in view of their indices:
Recall that for very low energies, 𝑔 has index 6, ℬ±

0 has
index 4 and 𝑓 has index 2. These indices show that, for
connections between 𝑔, ℬ±

0 and 𝑓 , one should examine the
corresponding 𝑛-th, 𝑛 + 1-th and 𝑛 + 2-th cover, which
we have investigated for 𝑛 = 3,4,5.

𝑔′ 𝑔 ℬ±
0 𝑓 𝑓3 halo

1 2
1 2

2 2 3
3 3 4 5 1
4 4 5 6 2

5 6 7
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