Lerman separatrix map in the problem of satellite attitude motion

V.V.Sidorenko

Keldysh Institute of Applied Mathematics RAS, Moscow Institute of Physics and Technology

Kholshevnikov Conference

August 19-23, 2024

Introduction

Three names that determined the development of studies on the rotational motion of celestial bodies

Leonard Euler

Vladimir Beletsky

Jack Wisdom

Introduction

The analysis of some problems in attitude dynamics requires the study of 2DOF Hamiltonian systems with a pair of orbits bi-asymptotic to a saddle-center equilibrium. It provides the possibility of applying the approach developed by L.M.Lerman and C. Grotta Ragazzo.

•Lerman L.M. Hamiltonian systems with loops of a separatrix of a saddle-center // Sel. Math. Sov. 1991. V.. 10. P. 297-306. •Grotta Ragazzo C. On the stability of double homoclinic loops // Commun. Math. Phys. 1997. V. 184. P. 251-272.

Axisymmetric satellite in a gravity field: motion equations

prolate satellite $\Theta_c < 1 - elong$
 $\theta_c < (\alpha(\tau), \beta(\tau), p_{\alpha}(\tau), p_{\beta}(\tau))^T$ is a solution of the motion

then $Q\mathbf{z}(-\tau), Q = diag(-1,1,1,-1)$ is a solution too. *T Colate satellite*
 *C*_{*y*}, *P*_{*a*}(*t*), *p*_{*β*}(*Q***z**(-*t*), *Q* = *diag* $\mathbf{z}(-\tau)$ $=$ the satellite $\Theta_c < 1 -$
 $(\tau), p_{\alpha}(\tau), p_{\beta}(\tau))^T$ is a solution of th
 $-\tau), Q = diag(-1,1,1,-1)$ is a solution **z**

Kholshevnikov Conference

August 19-23, 2024

Invariant manifold

The strategy: to use the composition of the approximate local and global maps for studies of the phase flow properties in the vicinity of this double homoclinic loop

Construction of the local map (L-GR)

 $\Theta_c < 1$ – elongated satellite $\alpha_* = \frac{\pi}{2} \mod \pi$, $\beta = 0 \mod$

$$
\alpha_* = \frac{\pi}{2} \mod \pi, \quad \beta = 0 \mod \pi
$$

6

August 19-23, 2024

Consequence of Generalized

Lyapunoff Theorem (Moser-Russmann)
\n
$$
\mathbf{z} = (\alpha, \beta, p_{\alpha}, p_{\beta})^T \mapsto \tilde{\mathbf{z}} = (\tilde{\alpha}, \tilde{\beta}, \tilde{p}_{\alpha}, \tilde{p}_{\beta})^T
$$
\n
$$
\tilde{p}_{\alpha} = p_{\alpha} + O(|\mathbf{z} - \mathbf{z}_{*}|^2), \quad \tilde{p}_{\beta} = p_{\beta} + O(|\mathbf{z} - \mathbf{z}_{*}|^2)
$$
\n
$$
\tilde{\alpha} = \alpha - \alpha_{*} + O(|\mathbf{z} - \mathbf{z}_{*}|^2), \quad \tilde{\beta} = \beta + O(|\mathbf{z} - \mathbf{z}_{*}|^2)
$$
\n
$$
\mathbf{z}_{*} = (0, 0, \alpha_{*}, 0)
$$

New Hamiltonian

$$
\tilde{H} = \kappa I_{\alpha} + I_{\beta} + O(I_{\alpha}^2 + I_{\beta}^2)
$$

$$
I_{\alpha} = \frac{1}{2\kappa} [\tilde{p}_{\alpha} - (\kappa \tilde{\alpha})^2]
$$

$$
I_{\beta} = \frac{1}{2} (\tilde{p}_{\beta}^2 + \beta^2)
$$

$$
\kappa = \sqrt{3(1 - \Theta_c)}
$$

Kholshevnikov Conference

Construction of the local map (L-GR)

Kholshevnikov Conference

August 19-23, 2024

"Global" maps

Kholshevnikov Conference

August 19-23, 2024

Composition of local and "global" maps

$$
\text{Map } F: \Pi^+ \cup \Pi^- \to \Pi^+ \cup \Pi^-
$$
\n
$$
h = 0
$$
\n
$$
\sum_{\substack{\sum_{i=1}^{k} q_i \leq \sum_{i=1}^{k} p_i \\ \sum_{i=1}^{k} p_i \leq \sum_{i=1}^{k} p_i \\ \sum_{i
$$

Kholshevnikov Conference

August 19-23, 2024

Comparison with Poincare mapping

h=0, $F^2: \Pi^+ \to \Pi^+$

Section of the plane $\alpha = 0 \pmod{\pi}$ by trajectories in which the angle α increases and its approximation by the mapping $F^2: \Pi^* \to \Pi^*$. The value of the Hamiltonian $h = 0$. In the case a the ratio of the moments of inertia of the satellite $\theta_z = 0.87$; numerical study indicates that the mapping has invariant curves enclosing the point $y = 0$. In the case b the parameter $\theta_z = 0.82$ and there are no invariant curves enclosing $y = 0$.

 $10¹$

Scaling (h=0)

$$
F(e^{\frac{\kappa n\pi}{2}}\tilde{\mathbf{y}}) = (-1)^n e^{\frac{\kappa n\pi}{2}} F(\tilde{\mathbf{y}}), n \in Z
$$

$$
\theta_c = 0.85
$$

Kholshevnikov Conference

August 19-23, 2024

Fixed points of F²ⁿ (h=0)

Kholshevnikov Conference

August 19-23, 2024

Empirical approach: 30 points on a semicircle with a radius of 0.001, N_{1000} is the minimum number of iterations required to move one of the points to a unit distance from the origin

Factorization (h=0)

$$
\tilde{\mathbf{y}}_{\Sigma^{\pm}} = \sqrt{2J_{\Sigma^{\pm}}} \begin{pmatrix} \cos\left(\varphi_{\Sigma^{\pm}} + \frac{1}{\kappa} \ln J_{\Sigma^{\pm}}\right) \\ \sin\left(\varphi_{\Sigma^{\pm}} + \frac{1}{\kappa} \ln J_{\Sigma^{\pm}}\right) \end{pmatrix}
$$

Modified polar symplectic coordinates

Formulas for mapping in polar coordinates:

$$
J_{\Sigma^-} = J_{\Sigma^+} \sqrt{\beta^2 \sin^2 \varphi_{\Sigma^+} + \frac{1}{\beta^2} \cos^2 \varphi_{\Sigma^+}}
$$

$$
\varphi_{\Sigma^-} = \left[\arctg \left(\beta^2 \tg \varphi_{\Sigma^+} \right) - \frac{1}{\kappa} \ln J_{\Sigma^-} \right] \left(\text{mod } \pi \right)
$$

Kholshevnikov Conference

August 19-23, 2024

Factorization (h=0)

Factoring change of variables:

$$
J_{\Sigma^{\pm}} \rightarrow \eta_{\Sigma^{\pm}} = -\frac{1}{\kappa} \ln J_{\Sigma^{\pm}}
$$

Factorized mappings:

Factorized mappings:
\n
$$
\eta_{\Sigma^-} = \left[\eta_{\Sigma^+} - \frac{1}{\kappa} \ln \sqrt{\beta^2 \sin^2 \varphi_{\Sigma^+} + \frac{1}{\beta^2} \cos^2 \varphi_{\Sigma^+}} \right] (\text{mod } \pi)
$$
\n
$$
\varphi_{\Sigma^-} = \left[\arctg \left(\beta^2 \text{tg } \varphi_{\Sigma^+} \right) + \eta_{\Sigma^-} \right] (\text{mod } \pi)
$$

Preserved measure

$$
e^{-\kappa\eta_{\Sigma^\pm}}d\eta_{\Sigma^\pm}d\varphi_{\Sigma^\pm}
$$

Motion properties at h<0

Stability of fixed point y=0
\n
$$
b_0(\eta) = \frac{1}{2} tr \left(D \left(F_{\Sigma^-} \circ F_{\Sigma^+} \right) \Big|_{y_{\Sigma^-}=0} \right) =
$$
\n
$$
= \frac{1}{4} \left[\left(\alpha - \frac{1}{\alpha} \right) \left(\beta - \frac{1}{\beta} \right) - \left(\alpha + \frac{1}{\alpha} \right) \left(\beta + \frac{1}{\beta} \right) \cos 2\eta \right].
$$

$$
\eta = -\frac{1}{\kappa} \ln |2h| + c_0
$$

The alternation of stability and instability in the family of plane oscillations

August 19-23, 2024 **16**

Kholshevnikov Conference

Motion properties at h>0

The alternation of stability and instability in the family of planar rotations

Kholshevnikov Conference

Coding of doubly asymptotic motions (h>0)

Let's mark the motion close to the upper separatrix with the symbol "+" and mark the motion close to the lower separatrix with the symbol ``-''.

Proposition: there are possible doubly asymptotic motions corresponding to any finite sequence of symbols + and -.

Kholshevnikov Conference

August 19-23, 2024

- •The analysis revealed previously unknown properties of the rotational motion of a body in a gravitational field
- •Approximate formulas for the mappings generated by the phase flow simplify numerical studies

•It would be interesting to consider the case of an asymmetric body or a case where the projection of the kinetic moment on the axis of symmetry of the body is nonzero.

Picture generated by a neural network for the request "rotational motion of a rigid body in a gravitational field"

Thank you for your attention!

Kholshevnikov Conference

August 19-23, 2024