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the stability of motion of dynamical systems

@ Definition of Lyapunov stability; Lyapunov theorem on stability;
Lyapunov's theorems on asymptotic stability and instability on linear
approximation.

@ Lagrange-Dirichlet theorem for a natural mechanical system;
Kelvin-Chetaev theorems on the influence of gyroscopic and dissipative
forces on the stability of the equilibrium position (even/odd degree of
instability), steady states.

@ Theorem on the existence of periodic solutions in Lyapunov systems
(analytical first integral, autonomy and non-resonance required).
(close to even unstable equilibrium position)
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Stable-unstable solutions

Sun-Earth and Earth-Moon Lagrange Points
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Gyroscopic stabilization
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Jupiter's co-orbital asteroids
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Existence of periodic orbits in Lyapunov systems
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Existence of periodic orbits

Quegiao rela;
satellite %

Earth i

- //
-~ Moon s
1 P
7
> i
lunar nearside ~ lunar farside

L2 halo orbit

Tatiana Salnikova, Eugene Ku, osov Moscow St August 19-24, 2024



Space project "Spektr-RG"(Sun-Earth L, point)
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PROBLEM SETTING

@ For nonlinear systems there are various behavior scenarios - orbital
stability, Poisson stability, Poincaré and Birkhoff stability, Laplace
(Jacobi) stability, conditional stability and so on.

@ We discuss a new behavior of a dynamic system near an unstable
equilibrium position - let's call it localized movements. These are
trajectories located in the selected neighborhood of unstable
equilibrium.

@ When proving the existence of localized trajectories, we do not require
such conditions as autonomy, absence of resonances, presence of an
analytical first integral.
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DEFINITION

@ If in an equilibrium position the potential energy of a natural system
reaches a strict local minimum, then, by virtue of Bolotin's theorem,
at small positive values of the total energy there is at least one
periodic solution.

In this case, the equilibrium position is stable in Lyapunov sense.

@ We consider a situation where the equilibrium position is
non-degenerate and Lyapunov unstable. Moreover, its degree of
instability is not zero and is less than the number of degrees of
freedom.

@ We prove that for any sufficiently small positive value of the total
energy, there is a motion with a given energy value that does not leave
a small neighborhood of the equilibrium position. These motions we
call LOCALIZED MOTIONS.
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LOCALISED MOTIONS

@ If the equilibrium position is stable in Lyapunov sense, all solutions in
it's vicinity can be called LOCALIZED, among them there are periodic
solutions.

@ If the equilibrium position is unstable, and system is of Lyapunov type,

the corresponding Lyapunov periodic solution can be called
LOCALIZED.

@ The goal of current study is to show in more general case the
existence of LOCALIZED MOTIONS.
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Example of potential energy with saddle point
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Lagrangian systems — natural system

THEOREM 1.
q:(qlv"'vqn)

L(q,9) = %(A(q)q,d) — V(a).

V(q) and A(q) € C?[q].

Let g = 0 - non-degenerate and Lyapunov unstable equilibrium position,
degree of instability n, 1 < n < n— 1. Then for any sufficiently small ¢ > 0
it exists hg > 0, for any h: 0 < h < hg il exist q(t), with energy h,
q%+...+q§<5.

Remark

Unlike Lyapunov theorem on the existence of periodic solutions in
Lyapunov systems our result remains in the case of resonances for ws.
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Stable, unstable and central manifolds

Fig. 1.1 Stable, center and
unstable manifolds

Localized solutions belong to the central manifold.
For non-autonomous systems, invariant manifolds disappear —>
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Lagrangian systems — system with gyroscopic and

dissipative forces

THEOREM 2.

Let g = 0 - non-degenerate and Lyapunov unstable equilibrium position,
degree of instability n, 1 <n <n-—1.

Let gyroscopic and dissipative forces — generalized forces of the form

Q = C(t)a+ O(a*> +4°),

where C — either a constant or non-constant n x n matrix such that
||IC|| < 4, where ¢y — some positive small quantity determined by the
parameters of the system.

Then for any sufficiently small € > 0

it exists hg > 0, such that for any h: 0 < h < hg it exists (localized)
solution q(t), with initial energy h, always in the area ¢ + ...+ ¢° < e.

Tatiana Salnikova, Eugene Kugushev Lomonosov Moscow St August 19-24, 2024



Particular case — system with gyroscopic forces,

n=2

THEOREM 3.

Let g = 0 - non-degenerate and Lyapunov unstable equilibrium position, its
degree of instability n = 1.

Let gyroscopic forces are small.

Then for any sufficiently small e > 0

it exists hg > 0, such that for any h: 0 < h < hg

it exists solution q(t), with initial energy h, always in the area ¢% + g3 < «.
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Comments

In accordance with Morse Lemma, in some neighborhood of a
non-degenerate critical point there is a local coordinate system in which

Lio o
V(a) =5 (a1 — @)
Using linear substitution we move to normal coordinates x = (x1, x2) in
1
which V(x) = 5 (w2x12 - a2x22) , w >0, a> 0. With gyroscopic forces
Lagrange equations read:

X1 = —w?x1 + ko + fi(x,X)

(2 12 .
X2 e a2X2 _ CX]_ _I_ fz(X,)I(), f; O(X +X )7 | 172’ (3)

where ¢ — some constant (possibly, c(t) )
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Comments

We fix h > 0.

Area of possible motion: w2x12 — a2x22 < 2h. Let us define a closed
subdomain W in it: o®x3 < 4h.

In W we have w?x? < 6h, and w?x} + a?x3 < 10h.

Boundary W consists of four parts: 1o — {wx; = F1/2h + a2x22,
ox3 < 4h}, on the boundary of the area of possible of motion;

and 34 — {ax = £V4h, w?x? < 6h}.

To prove the theorem, the topological Wazewski method applying the
concept of retract of Borsuk is used.
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Numerical simulation L1 — autonomous /

non-autonomous cases
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1. Theorem 3 gives us sufficient condition for existence of the localized
motions,

o — |c|v/2 > 0 is important.

2. It is possible to consider c(t) < const (gyroscopic forces depending on
time)

3. Adding dissipative forces does not contradict the proof of the theorem.
E. . Kyrywes, T. B. CanbHukoBa. CyLjecTBOBaHUE JIOKA/IN30BAHHbIX

ABVXKEHUIT B OKPECTHOCTY HEYCTOWYMBOrO MOJIOXKEHNS] paBHOBeCUs, 1 pyabi
Matematuyeckoro nnctutyra umenn B. A. Creknosa, Tom 327.
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Libration points of the EARTH - MOON system

op6uma JyHol /yna
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Existence of periodic orbits in Lyapunov systems
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Invariant manifold structures of L1

(Marsden)

.. | Elliptical Orbit
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Localized solution (L1)
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Numerical n - Libration point

0.8 4 — h=1.5944
— epsilon=0.1
0.6 1 — <alpha=3.3701
—— omega=2.0442
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Numerical n - Libration point

h=1.5863
epsilon=0.1
alpha=2.7237
omega=1.4863
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Numerical simulation - Libration point L3

h=1.5061
epsilon=0.1
alpha=1.7382
omega=0.1036

a—|c[v2>0(?)

inl i for bounciry
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Numerical simulation - trajectory closed to

localised (L1)
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Localized solution (L1)
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Localized solution (L2)
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Localized solution (L3)
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Three-body spatial problem

In vicinity of collinear libration points L;(0, x2*,0),/ = 1,2, 3 equations of
motion read:

X] = —w2X1 + cxo + fl(X, X)

Xp = a2x2 —cx1 + f2(X7 X)

. 1, :

X3 = —5(04 — 1)x3 + f3(x, X)

Area of possible motion for linear system:

1
whd — a®x3 + E(oz2 —1)x3 < 2h
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Spatial problem: L1, ¢ = 7/3, autonomous /

non-autonomous cases
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Spatial problem: L3, non-autonomous case,

¢=m/9 and p =
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Thank you for attention!
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