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Abstract. The planar oscillations of a system of two bodies connected by a
spherical joint that moves along an elliptic orbit under the action of grav-
itational torque in the plane of the orbit are investigated. The librational
motion of a two-body system on an elliptic orbit is described by the second
order system of differential equations with the periodic coefficients. Applying
the perturbation techniques the periodic solution of the equations of motion
is constructed in the form of power series in a small parameter. Using the
proposed approach it is shown that the motion of the two-body system is
described by periodic oscillations in the plane of an elliptic orbit. All the rele-
vant symbolic computations are performed with the help of computer algebra
systems.

Introduction
We consider the dynamics of a two-body system (satellite and stabilizer) connected
by a spherical joint that moves in gravitational field in the plane of an elliptical
orbit. The dynamics of various schemes for satellite-stabilizer gravitational orien-
tation systems on a circular orbit was discussed in many papers, some review of
them can be found in papers [1, 2, 3].

In the previous works the equilibrium orientations of the system on a circular
orbit only in the simplest cases were considered when the spherical joint is located
at the intersection of the satellite and stabilizer principal central axis of inertia
and in the case where the spherical joint is positioned on the line of intersection
between two planes formed by the principal central axes of inertia of the satellite
and stabilizer [4, 5, 6].

On a circular orbit, there are spatial oscillations of a system of two connected
bodies at the vicinity of equilibria. In paper [7], the eigen oscillations of a system
of two bodies were studied and the parameters of the system, optimal in terms of
speed, were found for the transition of the system to equilibrium. A detailed study
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of the oscillations of a satellite (a rigid body) in the plane of an elliptical orbit and
the conditions for their stability were carried out in [8].

In the previous works the planar oscillations of a system of two coupled
bodies on an elliptic orbit were carried out only for simple cases, when the centers
of mass of the first and second bodies coincide [9], [10]. Here, we study the planar
oscillations of a two-body system on an elliptic orbit in case when the spherical
joint is located at the intersection of the first and second body principal central
axis of inertia. Applying the perturbation techniques and appropriate symbolic
computations we construct the periodic solution in the form of a power series in a
small parameter.

1. Equations of Motion
We consider the problem of two bodies connected by a spherical joint that move on
an elliptic orbit. To write the equations of motion of two-body system, we introduce
the following right-handed Cartesian coordinate systems: OXY Z is the orbital
coordinate system, the OZ axis is directed along the radius vector connecting the
Earth center of mass C and the center of mass O of the two-body system, the OX
axis is directed along the linear velocity vector of the center of mass O, and the OY
axis coincides with the normal to the orbital plane. The axes of coordinate systems
O1x1y1z1 and O2x2y2z2, are directed along the principal central axes of inertia
of the first and the second body, respectively. The orientation of the coordinate
system Oixiyizi with respect to the orbital coordinate system is determined by
the aircraft angles αi (pitch), βi (yaw), and γi (roll) (see [3]).

Suppose that (ai, bi, ci) are the coordinates of the spherical joint P in the
body coordinate system Oxiyizi, Ai, Bi, Ci are principal central moments of in-
ertia; M1M2/(M1 + M2) = M ; Mi is the mass of the ith body; ω is the angular
velocity for the center of mass of the two-body system moving along an elliptic
orbit. Then we use the expressions for kinetic energy of the system in the case
when b1 = b2 = c1 = c2 = 0 and the coordinates of the spherical joint P in the
body coordinate systems are (ai, 0, 0) and when the motions of the two-body sys-
tem are located in the plane of the elliptic orbit (α1 6= 0, α2 6= 0, β1 = β1 = 0,
γ1 = γ2 = 0, α̇1 = dα1/dt, α̇2 = dα2/dt, where t is time) in the form [1]

T = 1/2
(
B1 +Ma21

)
(α̇1 + ω)2 + 1/2

(
B2 +Ma22

)
(α̇2 + ω)2

− Ma1a2 cos(α1 − α2)(α̇1 + ω)(α̇2 + ω). (1)

The force function, which determines the effect of the Earth gravitational field on
the system of two connected by a joint bodies, is given by [1]

U = −3µ/(2ρ3)
(
(A1 − C1)sin2α1 + (A2 − C2)sin2α2

)
+ 3/2Mµ/ρ3

(
(a1 sinα1 − a2 sinα2

)2
+Mµ/ρ3a1a2 cos(α1 − α2). (2)

Here ρ is a radial distance between the center of mass of the Earth C and center
of mass of the system O; µ = fM0, where f is a gravitational constant, and M0
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is the mass of the Earth; ω = dϑ
dt = ω0(1 + e cosϑ)2; µ

ρ3 = ω2
0(1 + e cosϑ)3; ϑ is

the true anomaly and e is the orbital eccentricity. On the circular orbit ω = ω0,
µ
ρ3 = ω2

0 , ϑ = ω0t.
By using the kinetic energy expression (1) and the expression (2) for the

force function, the equations of motion for this system can be written as Lagrange
equations of the second kind in the form of a system of second-order ordinary
differential equations in variables α1 and α2 [1]

(B1 +Ma21)(α̈1 + ω̇)−Ma1a2(α̈2 + ω̇) cos(α1 − α2)

− Ma1a2
(
(α̇2 + ω)2 − µ/ρ3) sin(α1 − α2)

+ 3µ/ρ3
(
(A1 − C1 −Ma21) sinα1 +Ma1a2 sinα2

)
cosα1 = 0, (3)

− Ma1a2(α̈1 + ω̇) cos(α1 − α2) + (B1 +Ma21)(α̈2 + ω̇)

+ Ma1a2
(
(α̇1 + ω)2 − µ/ρ3) sin(α1 − α2)

+ 3µ/ρ3
(
(A2 − C2 −Ma22) sinα2 +Ma1a2 sinα1

)
cosα2 = 0,

which determine the oscillations of the two-body system in the plane of the elliptic
orbit in the orbital coordinate system. In (3), the dot denotes differentiation with
respect to time t.

One can easily check that the system (3) has the stationary solution

α1 = α2 = 0. (4)

Our goal is to obtain the periodic solution of the equations of motion (3) in the
form of a power series in a small parameter e (e� 1) in the neighborhood of the
stationary solution (4).

2. Periodic solutions
To perform the calculations we assume that the oscillations are small and replace
the sine and cosine in (4) by their expansions in power series. Doing the substitu-
tion dt = dϑ/(ω0(1 + e cosϑ)2) in (3) we change the independent variable from t
to ϑ and reduce the system to the form

− (1 + e cosϑ)α′′
2 + 2eα′

2 sinϑ+ (B1 +Ma21)/(Ma1a2)
(
(1 + e cosϑ)α1

′′

− 2eα′
1 sinϑ

)
− e(1 + e cosϑ)(α′

2 + 1)2 + e
(
2 sinϑ(1− (B1 +Ma21)/Ma1a2)

+ (4 + 3
(
(A1 − C1)−Ma21

)
/(Ma1a2)

))
= 0, (5)

− (1 + e cosϑ)α′′
1 + 2eα′

1 sinϑ+ (B2 +Ma22)/(Ma1a2)
(
(1 + e cosϑ)α2

′′

− 2eα′
1 sinϑ

)
+ e(1 + e cosϑ)(α′

1 + 1)2 + e
(
2 sinϑ(1− (B2 +Ma22)/Ma1a2)

+ (2 + 3
(
(A2 − C2)−Ma22

)
/(Ma1a2)

))
= 0.

The prime in (5) denotes differentiation with respect to ϑ. It is possible to check
that a general solution of nonlinear system (5) cannot be found in analytic form.
It is convenient for application of the perturbation techniques [11] and symbolic
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algorithms proposed in paper [12, 13]. However, we can seek for an approximate
solution in the form of power series in the small parameter e:

αi(ϑ) = eαi
(1)(ϑ) + e2αi

(2)(ϑ) + ..., (6)

Computation of unknown functions αi(ϑ) in (6) is done in accordance with the
techniques proposed in [11] and [12, 13] requires quite tedious symbolic computa-
tions. In this paper symbolic computations are performed using Wolfram Mathe-
matica [14] functions: TrigExpand, Series,Normal, Replace, DSolve, NDSolve.

Substituting (6) into (5) and collecting coefficients of equal powers of e, we
obtain the set of systems of linear differential equations which can be solved in
succession. For example, using in (6) only the first linear elements we obtain the
corresponding periodic solutions in the form

α
(1)
1 (ϑ) = ā1sin(ϑ) + b̄1cos(ϑ), α

(1)
2 (ϑ) = ā2sin(ϑ) + b̄2cos(ϑ), (7)

where the coefficients ā1, b̄1, ā2, b̄2 can be defined from the linear algebraic system.
The amplitudes of the oscillations of the first and the second bodies have the
expressions

R2
1 = (ā21 + b̄21)e2 = 4

e2b2

d2
,

R2
2 = (ā22 + b̄22)e2 = 4

e2b̄2

d2
, (8)

where

b = (B1 +Ma1(a1 − a2))(3(A2 − C2)−B2)− 4Ma2(a1B2 + a2B1),

b̄ = (B2 +Ma2(a1 − a2))(3(A1 − C1)−B1)− 4Ma1(a1B2 + a2B1), (9)
d = (3(A1 − C1)−B1)(3(A2 − C2)−B2)− 4Ma21(3(A2 − C2)−B2)

− 4Ma22(3(A1 − C1)−B1).

In the present work, we have considered the first approximation of the planar
oscillations of a system of two bodies connected by a spherical joint that moves
along an elliptic orbit. We have found the expressions of the periodic motion of
the system in the linear approximation. All the relevant computations in this work
are performed with the computer algebra system Wolfram Mathematica [14]. At
the next steps we plan to construct the quadratic and cubic approximation of the
periodic solutions which have very cumbersome expressions.
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