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1.0 Basic coordinate systems

Fig. 1. Basic coordinate systems

OXYZ - is the orbital coordinate system

are the coordinates of the spherical 

joint P in the body coordinate system i i i iO x y z
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1.1. Basic coordinate systems

Fig. 2. Orientation of the body–fixed axes with respect to the orbital 

coordinate system by the aircraft angles of pitch, yaw and roll



2.1 Equations of motion in the orbital plane

(1)

Here  is a radial distance between the center of mass of the Earth C and center

of mass of the system O;  = fM0, where f is a gravitational constant, and M0 is 

the mass of the Earth;                                                                                                    

is the true anomaly and     is the orbital eccentricity. On 

the circular orbit are the principal central 

moments,                                    and        is the mass of the i-th body; αi, βi, γi -

are the angles of pitch, yaw and roll; (ai, 0, 0) - are the coordinates of the of the 

spherical joint of the i-th body in reference frame.

Consider the motion of the two bodies system connected by a spherical 

joint around its center of mass  in the plane of an elliptic orbit when α1 ≠ 0, 

α2 ≠ 0, two aircraft angles β1 = β2 = 0, γ1 = γ2 =0. The expressions for the 

force function, which determines the effect of the Earth gravitational field on 

the system of two bodies connected by a spherical joint in the case 

b1=b2=c1=c2=0 have the form:
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2.2 Equations of motion

(2)

The expressions for the kinetic energy the system of two bodies connected 

by a joint in the case when b1=b2=c1=c2=0 have the form
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By using the kinetic energy expression (2) and the expression (1) for the

force function, the equations of motion for this system can be written as 

Lagrange equations of the second kind

0, 1,2.
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in the form of a system of second-order ordinary differential equations in 

two variables.



2.3 Equations of motion

(4)

(3)

The Lagrange equations have the form
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which determine the oscillations of the system in the plane of the elliptic orbit in

the orbital coordinate system. In (3-4), the dot denotes differentiation with respect

to time. This system has the stationary solution

1 2 0.   (5)



3.1 Periodic solutions

In the non-resonant case the solutions were found 

in the form of a power series in . In the resonant case in the form of a 

power series in of        .  It was shown that after the substitution

(6) reduces to the inhomogeneous Hill equation

(6)

Our goal is to obtain the periodic solution of the equations of motion 

(3-4) in the form of a power series in a small parameter e (           ) in 

the neighborhood of the stationary solution (5).

We assume that the oscillations are small and replace the sine and 

cosine in (3-4) by their expansions in power series. 

Doing in (3-4) the substitution
2

0(1 cos ) ,dt d e   

1e

we change the independent variable from t to  and reduce the system to the 

form of two second order of differential equations.

The planar oscillations of a rigid body on an elliptic orbit are described by  
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3.2 Periodic solutions
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(8)

It is possible to check that a general solution of nonlinear system (8) cannot be 

found in analytic form. 

To find a solution of (8) it is convenient to apply the Krylov-Bogolyubov

perturbation techniques and symbolic computations.

System (3-4) reduces to the system on independent variable



3.3 Periodic solutions
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(9)

We can seek for an approximate solution of (8) in the form of power 

series in the small parameter e

Computation of unknown functions in (9) was done in 

accordance with the techniques proposed by Prokopenya, A.N.[8], 

which requires quite tedious symbolic computations.

In our work the symbolic computations are performed using Wolfram 

Mathematica functions: 

Expand; TrigExpand, Series; Normal, Replace; DSolve; NDSolve

Substituting (9) into (8) and collecting coefficients of equal powers of e, 

we obtain the set of systems of linear differential equations which can be 

solved in succession.
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3.4 Periodic solutions
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For example, using in (9) only the first linear elements we obtain the

corresponding periodic solutions in the form

1 1 2 2, , ,a b a bwhere the coefficients                         can be defined from the linear 

algebraic system. 

The amplitudes of the oscillations of the first and the second bodies have 

the expressions 2 2
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4. Conclusion

• We have considered the first approximation of the planar 

oscillations of a system of two bodies connected by a 

spherical joint that moves along an elliptic orbit.

• We have found the expressions of the periodic motion of 

the system in the linear approximation

• At the next step we plan to obtain the quadratic and cubic 

approximation of the periodic solutions

• To find the periodic solutions, the computer algebra 

system Wolfram Mathematica was used.
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