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Abstract. If in a planetary system the ratio of the time periods of revolution
of two planets around the host star is approximately equal to the ratio of
two small integers, then such a situation is characterized as mean motion
resonance (MMR). Available observational information indicates that MMR
are quite common in exoplanetary systems. Analytical studies of MMR are
carried out mainly within the framework of restricted or general three-body
problem. In 1985, J. Wisdom proposed an approach that makes it possible
to study the properties of the resonant motions of celestial bodies without
any restrictions on the eccentricities and inclinations of their orbits. Since the
application of this approach is associated with the construction of a special
approximate integral of the problem (adiabatic invariant), it is often called the
adiabatic approximation. We give a brief description of J. Wisdom's approach
to the analysis of MMR and its subsequent development, illustrated by the
results of the systematic use of this approach in our studies.

Introduction

Investigations of resonant motions in satellite and planetary systems are an im-
portant element in the study of their dynamical �skeleton�, the properties of which
determine the properties of many other physical processes in these systems. Clas-
sical approaches are focused primarily on the construction and study of periodic
solutions of equations of motion (see, for example, [1]). In 1985, J. Wisdom, rely-
ing on the theory of adiabatic invariants (AI), showed how regions with chaotic
dynamics are formed in the phase space of the three-body problem in the vicin-
ity of resonant solutions [2]. A strict justi�cation of Wisdom's constructions and
estimates of the di�usion rate of AI at MMR 3:1 were given by A.I. Neistadt [3].
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Adiabatic approximation in the study of resonances

The description of MMR in Wisdom's approach is completely equivalent to the pic-
ture of resonance e�ects given in textbooks on the modern theory of Hamiltonian
systems (for example, [4]). The behavior of the system at MMR is characterized
by the presence of dynamical processes with three time scales: �fast�, �semi-fast�
and �slow�. A �fast� dynamical process is the orbital motion of resonant bodies.
The �semi-fast� process is a variation of the resonant phase (a combination of
mean longitudes, longitudes of periastrons and longitudes of the ascending nodes).
The �slow� dynamical process consists of the secular evolution of the shape and
orientation of the orbits of celestial bodies.

For a qualitative analysis of secular e�ects within the Wisdom's approach,
double averaging of the equations of motion is applied. Averaging is carried out in
two stages. The �rst stage consists of averaging over �fast� processes. After a series
of transformations in the averaged equations, one can write down a subsystem that
describes a �semi-fast� process, and a subsystem that describes �slow� processes.
If we �x the values of the �slow� variables, the �semi-fast� system turns into an
integrable Hamiltonian system with one degree of freedom (allowing a transition
to �action-angle� variables). Averaging along its solutions of the right-hand sides of
the equations of the �slow� subsystem completes the construction of evolutionary
equations used to study secular e�ects.

In the general case, a �semi-fast� subsystem can be considered as a Hamil-
tonian system with slowly varying parameters, the role of which is played by slow
variables. From this interpretation it follows that the �action� variable correspond-
ing to this subsystem will be an approximate integral of the problem - an adiabatic
invariant. Taking into account the existence of this AI, Wisdom characterized his
approach as an adiabatic approximation.

An important di�erence between the adiabatic approximation and other ap-
proaches to MMR analysis is that it allows the consideration of possible transitions
between resonant modes of motion (in which the resonant phase oscillates) and
non-resonant modes (the resonant phase rotates). Each such transition is accom-
panied by a small quasi-random change in AI and a deviation of the true motion
from what is predicted by the averaged equations. Repeated changes in the mode
of motion lead to the di�usion of AI (in particular, we will see as the phase tra-
jectory of the original system eventually �lls a certain region in the phase space,
called the region of adiabatic chaos).

Examples of the application of the adiabatic approximation in

studies of MMR

J. Wisdom proposed his approach while studying MMR 3:1 in planar restricted
three-body problem. The use of this approach to study other resonances required
the introduction of various modi�cations taking into account their speci�cs.
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To analyze MMR in exoplanetary systems, Wisdom's approach was adapted
to the general three-body problem (more precisely, to the planetary variant of this
problem when two low-mass bodies are moving in slightly perturbed Keplerian
orbits around a signi�cantly more massive body).

In our talk we present some properties of MMR 1:1 and 3:1 in the planar
planetary problem, established using the Wisdom's approach [5]. Di�erent scenar-
ios of secular evolution were found and possible manifestations of chaotic dynamics
were identi�ed.
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