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The Dirichlet Equations

The equations of the dynamics of a homogeneous, incompressible, ideal fluid of unit
density in a Lagrangian form are in the case of potential forces applied to the fluid as
follows: (

∂x

∂a

)T

ẍ =−∂ (U+p)

∂a
, (1)

where a = (a1,a2,a3) are the initial positions of the material points of the medium (the
so-called Lagrangian coordinates), x(a, t) are the coordinates of the points of the medium
at the time t (i. e., x(a,0) = a), U(a, t) is the density of the potential energy of the

external forces, p(a, t) is the pressure, and ∂ x
∂ a

=
∥∥∥ ∂ xi

∂ aj

∥∥∥ is the matrix of the partial

derivatives. These equations must be supplemented with the incompressibility condition,
which can be written is the case at hand as

det

(
∂x

∂a

)
= 1. (2)

Thus, we obtain a system of partial differential equations in which four quantities, viz.,
x1,x2,x3, and p, are unknown as the functions of the variables a and t. To determine
them, except initial conditions (x(a,0) = a, ẋ(a,0) = v0(a)), also boundary conditions
must be specified; in our case, the latter reduce to the statement that the pressure has
the same value independent of a everywhere on the free surface.
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Dirichlet noted that, if the potential of the external forces U(a, t) is a homogeneous
quadratic function of the Lagrangian coordinates, i. e.

U(a, t) = U0(t)+(a,V(t)a), (3)

where U0(t) is independent of a and V(t) is a symmetric matrix, then the equations of
motion (1), (2) admit a partial solution

x(a, t) = F(t)a, detF(t) = 1. (4)

Here, F(t) is a 3×3 matrix.
In this case, the boundary conditions will be satisfied provided that the fluid has initially
an ellipsoidal shape,

(a,A−2
0 a)6 1, (5)

where A0 = diag(A0
1,A

0
2,A

0
3) is the matrix of the initial semiaxes and the pressure has the

form
p(a, t) = p0(t)+σ(t)(1− (a,A−2

0 a)). (6)

We substitute (3), (4), and (6) into (1) and (2) to obtain equations for the matrix F(t)
and the function σ(t) in the form

FT F̈ =−2V−2σA−2
0 ,

detF = 1.
(the Dirichlet equations) (7)
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As Dirichlet showed, the system of ten equations (7) for ten unknown functions
Fij(t),σ(t), i, j = 1,2,3, is compatible.
Obviously, the transformation (4) changes the original ellipsoid (5) into the ellipsoid
specified by the quadratic form

(x,(FA2
0FT)−1x)6 1. (8)

It is known that such a transformation is given by the orthogonal matrix

ζ = Qx, QT = Q−1. (9)

In the new coordinates ζ , the ellipsoid is specified by the relationship

(ζ ,A−2ζ )6 1, (10)

where A = diag(A1,A2,A3) is the matrix of the principal semiaxes at the given time.
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Now, we determine the right-hand sides of equations (7). We use the known
representation of the gravitational potential for the interior of the ellipsoid in the system
of the principal axes

U(ζ ) =−3

4
mG

∫ ∞

0

dλ
∆(λ )

(
1−∑

i

ζ 2
i

A2
i +λ

)
, ∆2(λ ) = ∏

i

(A2
i +λ ), (11)

where G is the gravitational constant and m = 4
3 πρA1A2A3 is the mass of the ellipsoid.

It is now necessary to represent (11) in terms of the elements of the transformation matrix
F and in the Lagrangian coordinates a. We use (??) to find A = QFA0ΘT and obtain

A2 = AAT = QFA2
0FTQT ,

∆2(λ ) = det(A2 +λE) = det(FA2
0FT +λE),

∑
i

ζ 2
i

A2
i +λ

= (ζ ,(A2 +λE)−1ζ ) = (a,FT(FA2
0FT +λE)−1Fa).

(12)
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Thus, we find the following representation for the matrix V in the Dirichlet equations:

V = ε
∫ ∞

0

dλ√
det(FA2

0FT +λE)
FT(FA2

0FT +λE)−1F, ε =
3

4
mG; (13)

it can be shown by direct calculations (see [1]) that V depends on the elements of the
matrix F only through symmetric combinations of the form Φij = ∑k FikFjk, which are the
dot products of columns of the matrix F.
The relationship ∂ a

∂ ζ = A0ΘT A−1 can be used to easily show that, in the Riemann

equations, V̂ = diag(V̂1, V̂2, V̂3), where

V̂i = ε
∫ ∞

0

1

λ +A2
i

dλ
∆(λ )

=− 1

Ai

∂
∂Ai

ε
∫ ∞

0

dλ
∆(λ )

. (14)

[1] Dirichlet, G. L., Untersuchungen über ein Problem der Hydrodynamik (Aus dessen Nachlass

hergestellt von Herrn R. Dedekind zu Zürich), J. reine angew. Math. (Crelle’s Journal), 1861,

Bd. 58, S. 181–216.
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First Integrals

Vorticity
We write the law of conservation of vorticity for the hydrodynamic equations in the
Lagrangian form (1), thus obtaining

∑
i

(
∂xi

∂ak

∂ ẋi

∂al
− ∂xi

∂al

∂ ẋi

∂ak

)
= ξkl = const, (15)

with the condition ξkl =−ξlk satisfied. We denote this antisymmetric matrix as Ξ = ‖ξkl‖
and find for the Dirichlet equations (7) that

Ξ = FT Ḟ− ḞT F = const. (16)

A straightforward proof of the conservation of vorticity Ξ based on the Dirichlet
equations (7) is obvious (since the right-hand side is a symmetric matrix).
As already mentioned, the conservation of vorticity in this problem was noted by Dirichlet
even before the appearance of a classical study by Helmholtz in which this law was
extended to ideal hydrodynamics on the whole.
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Momentum
The angular momentum relative to the center of the ellipsoid can be represented as

Mij =
∫
(xiẋj −xjẋi)d

3x =
m

5
∑
k

(FikḞjk −FjkḞik)(A
0
k)

2. (17)

In a matrix form, with the unimportant multiplier omitted, we have

M′ = FA2
0ḞT − ḞA2

0FT = const, (18)

where M′ = ‖ 5
m Mij‖.

Energy
In addition to the linear integrals, the equations of motion also admit another, quadratic
integral, viz., the total energy of the system. The integration of the kinetic and the
potential energy of the fluid particles over the volume of the ellipsoid yields

E =
m

5
(Te +Ue),

Te =
1

2
Tr(ḞA2

0ḞT),

Ue =−2ε
∫ ∞

0

dλ√
(λ +A2

1)(λ +A2
2)(λ +A2

3)
.

(19)
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The studies by L. Dirichlet in the dynamics of a self-gravitating fluid ellipsoid are dated
back to 1856–1857. Ditichlet reported these studies in his lectures in 1857 and
simultaneously in the Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen
as a brief note [1]. Unfortunately, he had no time to describe and publish his results in
full (due to his illness and untimely death in 1859). These studies were prepared for
publication and posthumously published by Dedekind in 1861 [2].
Three basic results can be isolated in Dirichlet’s study:

1 A new partial solution of the hydrodynamic equations is presented, which describes
the motion of a homogeneous, self-gravitating ellipsoid, and the equations of motion
(of fluid particles) in motionless axes are derived.

2 Seven first integrals of the obtained equations are found; six of them, linear in
velocities, correspond to the conservation laws of vorticity and total momentum, and
the seventh integral is the total energy of the moving fluid.

3 The motion of an axisymmetric ellipsoid is integrated in quadratures with the
inclusion of Newton’s and Maclaurin’s spheroids as partial solutions (in this case,
Dirichlet also analyzes the possibility of existence of the solutions found in the case
of no external pressure, i. e., in vacuum).

[1] Dirichlet, G. L., Untersuchungen über ein Problem der Hydrodynamik, Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen (Mathematisch-Physikalische Klasse), Jg. 1857,
No. 14, Aug. 10. S. 203–207 (Dirichlet’s Werke, Bd. 2, S. 28).
[2] Dirichlet, G. L., Untersuchungen über ein Problem der Hydrodynamik (Aus dessen Nachlass
hergestellt von Herrn R. Dedekind zu Zürich), J. reine angew. Math. (Crelle’s Journal), 1861,
Bd. 58, S. 181–216.
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It is interesting to note that Dirichlet noted the integrals corresponding to the
conservation of the vorticity vector prior to the publication of the well-known study of
1858 by Helmholtz [1]. As can be judged by the form of the obtained integrals, Dirichlet
was aware (before Helmholtz) of the conservation of vorticity not only for a particular
solution but also for the general hydrodynamic equations (Dirichlet’s note [2] is also
evidence for his awareness). This fact was also noted by Klein in his well-known
lectures [3].
Dedekind, while preparing Dirichlet’s results for publication, discovered the reciprocity
law according to which each solution of the Ditrichlet equations is corresponded with a
reciprocal solution in which the variables that describe the rotation of the ellipsoid and
the fluid motion inside it are permutated; in particular, he presented a solution (the
Dedekind ellipsoid) reciprocal to the Jacobi ellipsoid, with the coordinate axes remaining
motionless in space and with the fluid moving inside this invariable region [4].

[1] Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den
Wirbelbewegungen entsprechen, J. reine angew. Math., 1858, B. 55, S. 25-–55. Reprinted in:
Wissenschaftliche Abhandlungen von Hermann Helmholtz, I, Barth, Leipzig, 1882, S. 101–134.
[2] Dirichlet, G. L., Untersuchungen über ein Problem der Hydrodynamik, Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen (Mathematisch-Physikalische Klasse), Jg. 1857,
No. 14, Aug. 10. S. 203–207 (Dirichlet’s Werke, Bd. 2, S. 28).
[3] Klein, F., Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert (German)
[Lectures on the Development of Mathematics in the 19th Century], Berlin-New York:
Springer-Verlag, 1979.
[4] Dedekind, R., Zusatz zu der vorstehenden Abhandlung, J. reine angew. Math. (Crelle’s
Journal), 1861, Bd. 58, S. 217–228.
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Hamiltonian Principle and Lagrangian Formalism

It is known (see, e. g., [1]) that the motion of ideal fluid satisfies the Hamilton principle;
therefore, Dirichlet’s solution also satisfies this principle. This makes it possible to
represent the equations of motion in a Lagrangian and, next, in a Hamiltonian form. The
Hamiltonian principle for the considered problem was used for the first time by
Lipschitz [2] and Padova [3].
As the Lagrangian function, it is necessary to choose the difference between the kinetic
and potential energies of the fluid in the ellipsoid; within the unimportant multiplier, we
have

L = Te −Ue, (20)

where Te and Ue were defined above in (19). The elements of the matrix F appear as
generalized coordinates.

[1] Kirchhoff, G., Vorlesungen über mathematische Physik. Mechanik, Leipzig: Teubner, 1876.
[2] Lipschitz, R., Reduction der Bewegung eines flüssigen homogenen Ellipsoids auf das
Variationsproblem eines einfachen Integrals, und Bestimmung der Bewegung für den Grenzfall
eines unendlichen elliptischen Cylinders, J. reine angew. Math. (Crelle’s Journal), 1874, Bd. 78,
S. 245–272.

[3] Padova, E., Sul moto di un ellissoide fluido ed omogeneo, Annali della Scuola Normale

Superiore di Pisa, t. 1, 1871, p. 1–87.
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We write the Lagrange – Euler equations taking into account the constraint detF = 1 to
obtain (

∂L

∂ Ḟ

)·
− ∂L

∂F
= κ

∂ϕ
∂F

, (21)

where ϕ = detF, and use the following matrix notation for any function: ∂ f
∂ F

=
∥∥∥ ∂ f

∂ Fij

∥∥∥,
∂ f

∂ Ḟ
=
∥∥∥ ∂ f

∂ Ḟij

∥∥∥, κ being the undefined Lagrangian multiplier. The differentiation in view of

the formula
(

∂ ϕ
∂ F

)T
= ϕF−1 yields

F̈A2
0 = 2ε

∂
∂F

∞∫

0

dλ√
det(FA2

0FT +λE)
+κ(F−1)T detF. (22)

We can easily make sure that these equations coincide with the Dirichlet equations (7) if
we set κ = 2σ .
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The matrix of the initial semiaxes A0 appears in the Lagrangian function and the
equations of motion of the system as a set of parameters. Obviously, these parameters
can be transferred to the initial conditions; indeed, upon the substitution G = FA0

(suggested by Dedekind [1]), the Lagrangian function and the equation of constraint can
be written as

L =
1

2
Tr(ĠĠT)+2ε

∞∫

0

dλ√
det(GGT +λE)

,

ϕ = detG = detA0 = const.

(23)

The initial conditions have obviously the form G|t=0 = A0, and the equation of motion

preserves its form,
(

∂ L

∂ Ġ

)·
− ∂ L

∂ G
= H̃

∂ ϕ
∂ G

.

It can also be shown that the substitution

G → (detA0)
1/3G, t → (detA0)

1/3

2ε
t

reduces the system (23) to the case of ε = 1/2,ϕ = 1. Thus, the dynamics of the
self-gravitating fluid ellipsoid is described by a natural Lagrangian system without
parameters on the SL(3) group.

[1] Dedekind, R., Zusatz zu der vorstehenden Abhandlung, J. reine angew. Math. (Crelle’s

Journal), 1861, Bd. 58, S. 217–228.
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Symmetry Group and the Dedekind Reciprocity Law
The Lagrangian representation of the Dirichlet equations (21) offers a very simple way to
finding the symmetry group of the system. Indeed, it can be shown that the Lagrangian
with the constraint [see (23)] and, therefore, the equations of motion are invariant with
respect to transformations of the form

G′ = S1GS2, S1,S2 ∈ SO(3). (24)

Thus, the system is invariant with respect to the group Γ = SO(3)⊗SO(3).
Clearly, the Noether integrals corresponding to the transformations (24) are the integrals
of vorticity and total momentum (25). Accordingly, as will be shown below, the Riemann
equations describe a system reduced based on the given symmetry group.
Furthermore, it can easily be shown using (23) that the equations of motion are invariant
with respect to the discrete transformation of transposition of matrices:

G′ = GT .

Therefore, we have

Теорема (The Dedekind reciprocity law)

Any solution, G(t), of the Dirichlet equations can be placed in correspondence with the
solution G′(t) = GT(t) for which the rotation of the ellipsoid and the rotation of the fluid
inside the ellipsoid (i. e., Θ and Q; see (??)) are interchanged.
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The most widely known example is the Dedekind ellipsoid reciprocal to the Jacobi
ellipsoid. In this case, the axes of the three-axial ellipsoid are spatially invariable and the
fluid inside it moves around the minor axis in closed ellipses [1, 2].
The first integrals — vorticity (??), momentum (18), and energy (19) — can be
represented in the form

Ξ = GT Ġ− ĠT G, M = GĠT − ĠGT ,

E =
1

2
Tr(ĠĠT)−2ε

∞∫

0

dλ√
det(GGT +λE)

.
(25)

We use a decomposition of the form

G = FA0 = QT AΘ (26)

We introduce the angular velocities corresponding to the orthogonal transformations,

w = Q̇QT , ω = Θ̇ΘT , (27)

which are known to be antisymmetric matrices.

[1] Dedekind, R., Zusatz zu der vorstehenden Abhandlung, J. reine angew. Math. (Crelle’s
Journal), 1861, Bd. 58, S. 217–228.

[2] Riemann, B., Ein Beitrag zu den Untersuchungen über die Bewegung einer flüssigen

gleichartigen Ellipsöıdes, Abh. d. Königl. Gesell. der Wiss. zu Göttingen, 1861.
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Riemann used the decomposition to represent the equations of motion on the
configuration space R

2 ⊗SO(3)⊗SO(3) (the direct product of the Abel group of
translations and two copies of the group of rotations of three-dimensional space), with
the elements of the matrices w and ω corresponding to the velocity components with
respect to the basis of left-invariant vector fields. The equations of motion assume the
form of the Poincaré equations on the Lie group [1]; in view of the fact that the
Lagrangian function (23) is independent of the elements of the matrices Q and Θ and
with due account for the constraint ϕ = A1A2A3 = const, we obtain the following
representation of the Riemann equations:

(
∂L

∂ Ȧi

)·
=

∂L

∂Ai
+ κ̃

∂ϕ
∂Ai

,

(
∂L

∂wi

)·
= ∑

j,k

εijk
∂L

∂wj
wk,

(
∂L

∂ωi

)·
= ∑

j,k

εijk
∂L

∂ωj
ωk.

(28)

where κ̃ is the Lagrangian undetermined multiplier (which coincides with σ within a
multiplier) and εijk is the Levi-Civita antisymmetric tensor.
From here on, the components wi and ωi are related to the elements of the
antisymmetric matrices (27) according to the regular rule

wij = εijkwk, ωij = εijkωk. (29)

[1] Borisov, A.V. and Mamaev, I.S., Rigid Body Dynamics, Moscow–Izhevsk: Inst. Comp. Sci.,

RCD, 2005 (in Russian).
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An enormous contribution to the investigation of the dynamics of the fluid ellipsoid was
made by an outstanding work by Riemann [1], which appeared in 1861, virtually
immediately after the publication of Dirichlet’s studies. The basic results of this work can
be briefly formulated as follows:

The equations of motion in moving axes (the principal axes of the ellipsoid) were
obtained, so that the order of the system was lowered and a linear-integral-based
reduction was done. Furthermore, Riemann represented the equations of motion of
the reduced system in a Hamiltonian form with a linear Lee –Poisson bracket
(Riemann himself called this procedure reduction to a better observable form).

All partial solutions corresponding to the motion of the ellipsoid without changes in
its form were presented and conditions of their existence were analyzed (i. e., the
possible lengths of the major semiaxes). All these solutions imply that the ellipsoid
rotates about an axis immovable in space. They included all solutions known by that
time — those obtained by Newton, Maclaurin, Jacobi, and Dedekind (for which the
rotational axis coincides with one of the principal axes) and also new solutions
(Riemann ellipsoids) for which the rotational axis lies in one of the principal planes
of the ellipsoid.

[1] Riemann, B., Ein Beitrag zu den Untersuchungen über die Bewegung einer flüssigen

gleichartigen Ellipsöıdes, Abh. d. Königl. Gesell. der Wiss. zu Göttingen, 1861.
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Riemann used the energy integral of the system as the Lyapunov function (in
modern terminology) to investigate the stability of shape-preserving motions (in the
class of motions preserving the ellipsoidal shape); in this way, he found the
Lyapunov-stability limits for the Maclaurin spheroids and Jacobi ellipsoids.

A particular case was noted in which a three-axial ellipsoid (unsteadily) rotates
about one of the principal axes, and its semiaxes vary with time. This gives rise to a
(Hamiltonian) system with two degrees of freedom for which Riemann noted an
analogy with the motion of a material point on a two-dimensional surface of the
form xyz = const in a potential field of forces (it is this case that we will consider
below in detail).

The study by Riemann was unique in terms of the importance of its results and
possibilities of further generalizations; it was well in advance of its time.
There is also a study by Brioschi of 1861 [1], which was dedicated to lowering the order
in the Dirichlet equations with the use of a decomposition into a potential and a vortical
component. However, no substantial advance in the problem was associated with this
work.

[1] Brioschi, F., Développements relatifs au § 3 des Recherches de Dirichlet sur un problème

d’Hydrodynamique, vol. 58, pag. 181 et suivantes de ce Journal, J. reine angew. Math. (Crelle’s

Journal), 1861, Bd. 59, S. 63–73.
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In his lectures in mechanics of 1876, Kirchhoff [1] also considered the motion of
self-gravitating fluid ellipsoids. He noted that the d’Alembert principle is applicable to the
Dirichlet motion (although he did not use it to derive the equation of motion). Kirchhoff
presents a quadrature for the axisymmetric case and separately analyzes the case where
the ellipsoid preserves the directions of its axes in space (a particular case of the motion
considered by Riemann); Kirchhoff (following Riemann) conjectures that this problem
also cannot be integrated in quadratures.
The possibility of applying the variational principle to the derivation of the equations of
motion of a fluid ellipsoid was independently shown by Padova in 1871 [2] and Lipschitz
in 1874 [3]. In the latter study [3], the problem of the motion of an elliptic cylinder was
also formulated and integrated in quadratures.

[1] Kirchhoff, G., Vorlesungen über mathematische Physik. Mechanik, Leipzig: Teubner, 1876.
[2] Padova, E., Sul moto di un ellissoide fluido ed omogeneo, Annali della Scuola Normale
Superiore di Pisa, t. 1, 1871, p. 1–87.

[3] Lipschitz, R., Reduction der Bewegung eines flüssigen homogenen Ellipsoids auf das

Variationsproblem eines einfachen Integrals, und Bestimmung der Bewegung für den Grenzfall

eines unendlichen elliptischen Cylinders, J. reine angew. Math. (Crelle’s Journal), 1874, Bd. 78,

S. 245–272.
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Betti [1] also used the variational principle to derive the equations of motion of a fluid
ellipsoid and represented these equations in a Lagrangian and a Hamiltonian form.
However, as Tedone noted in his extensive survey [2], Betti made a mistake in his study
when applying the variational principle to the derivation of the equation of motion of a
homogeneous ellipsoid with an ellipsoidal fluid-density stratification. In this case, the
hydrodynamic equations for the stratified, self-gravitating ellipsoid do not admit a
solution with a linear dependence on the initial coordinates, which Betti considered (in
view of the complex dependence of the gravitational potential inside the stratified
ellipsoid). Nevertheless, all Betti’s results remain valid for a constant density. Betti also
represented the equations of motion in a Hamiltonian form (explicitly using the Poisson
brackets on the so(3) algebra) with a linear Poisson bracket and carried out a
linear-integral-based reduction.

[1] Betti, E., Sopra i moti che conservano la figura ellissoidale a una massa fluida eterogenea,
Annali di Matematica Pura ed Applicata, Serie II, 1881, vol. X, pp. 173–187.

[2] Tedone, O., Il moto di un ellissoide fluido secondo l’ipotesi di Dirichlet, Annali della Scuola

Normale Superiore di Pisa, 1895, t. 7, pp. I–IV+1–100.
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The above-listed results are the principal achievements of the classical period of the
investigation of the dynamics of the Dirichlet ellipsoids.
General problems of the dynamics and statics of fluid ellipsoids, including the issues of
stability, were investigated in classical treatises by Basset [1], Lamb [2], Thomson and
Tait [3], Routh [4], in books by Appell [5], Lyttleton [6], in certain studies by
Basset [7–9], Duhem [10], Hagen [11], Hicks [12], Hill [13], Love [14, 15], etc. Note also
the following related subjects that constitute particular lines of research in this area.

[1] Basset, A., A Treatise on Hydrodynamics: With Numerous Examples, Vol. II, Ch. 15.,
Cambridge: Deighton, Bell and Co., 1888.
[2] Lamb, H., Hydrodynamics, New York: Dover Publications, 1932.
[3] Thomson, W. and Tait, P. G., Treatise on Natural Philosophy, Cambridge University Press,
Part II, 1912 (first edition 1883).
[4] Routh, E. J., A Treatise on Analytical Statics, Cambridge: Cambridge University Press, 1922,
Vol. 2.
[5] Appell, P., Traité de Mécanique rationnelle, tome IV: Figures d’équilibre d’une masse liquide
homogène en rotation, 2 ed., Paris: Gauthier-Villars, 1932 (IV-1), 1937 (IV-2).
[6] Lyttleton, R. A., The Stability of Rotating Liquid Masses, Cambridge: Cambridge Univ. Press,
1953.
[7] Basset, A., On the Motion of a Liquid Ellipsoid under the Influence of its Own Attraction,
Proc. London Math. Soc., 1885, vol. s1-17, no. 1, pp. 255–262.
[8] Basset, A., On the Stability of a Liquid Ellipsoid which is Rotating about a Principal Axis
under the Influence of its Own Attraction, Proc. London Math. Soc., 1887, s1-19, pp. 46–56.
[9] Basset, A., On the Steady Motion of an Annular Mass of Rotating Liquid, Amer. J. Math.,
1889, vol. 11, no. 2, pp. 172–181.
[10] Duhem, M.P., Sur la stabilite de l’équilibre relatif d’une masse fluide animée d’un
mouvement de rotation, J. de Math. Pures et Appl., 1905, vol. 7, ser. 5, pp. 331–350. 21



[11] Hagen, J., Ueber die Stabilitat des Gleichgewichtes einer auf einem dreiaxigen Ellipsoid mit
kleinen Excentricitaten ausgebreiteten Flussigkeit, Zeitschrift für Mathematik und Physik, 1877,
vol. 22, pp. 65–86.
[12] Hicks, W.M., On the Motion of a Mass of Liquid under its Own Attraction, when the Initial
Form is an Ellipsoid, Proc. Camb. Phil. Soc., 1883, Vol. IV, Pt. VI, pp. 1–4.
[13] Hill, M. J. M., Note on the Motion of a Fluid Ellipsoid under its Own Attraction, Proc.
London Math. Soc., 1891, s1-23, pp. 88–95.
[14] Love, A. E. H., On the Motion of a Liquid Elliptic Cylinder under its Own Attraction, Quart.
J. of Pure and Appl. Math., 1889, vol. 23, pp. 153–158.

[15] Love, A.E.H., The Oscillations of a Mass of Gravitating Liquid in the Form of an Elliptic

Cylinder which Rotates as if Rigid about its Axis,Quart. J. of Pure and Appl. Math., n.d., pp.

158–165.
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Hamiltonian Formalism and Symmetry-based Reduction

We represent the Riemann equations in a Hamiltonian form. To this end, we first use the
constraint equation ϕ = const to find a representation of one semiaxis,

A3 =
v0

A1A2
, (30)

where v0 is the volume of the ellipsoid (within a multiplier). We carry out the Legendre
transformation

pi =
∂L

∂ Ȧi

, mk =
∂L

∂wk
, µk =

∂L

∂ωk
, i = 1,2, k = 1,2,3,

H = ∑
i

piȦi +∑
k

(mkwk +µkωk)−L | Ȧ,ω ,w→p,m,µ .
(31)

It can be shown using the expressions for the integrals, that the vectors m = (m1,m2,m3)
and µ = (µ1,µ2,µ3) are related to the momentum and vorticity of the ellipsoid via the
formulas

m = QT M′, µ = ΘT ξ ′, (32)
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where the vectors M′ and ξ ′ are constituted by the components of the antisymmetric
matrices M′ and Ξ′ according to the normal rule (29). In the new variables, the equations
of motion assume the form

Ȧi =
∂H

∂ ṗi
, ṗi =

∂H

∂Ai
, i = 1,2,

ṁ = m× ∂H

∂m
, µ̇ = µ × ∂H

∂ µ
.

(33)

Here, the Hamiltonian is

H = HA +Hmµ +Ue,

HA =
1

2

A−2
3 (p2

1 +p2
2)+(p1A−1

2 −p2A−1
1 )2

∑A−2
i

, (34)

Hmµ =
1

4
∑

cycle

(
mi +µi

Aj −Ak

)2

+

(
mi −µi

Aj +Ak

)2

,

where Ue is specified by formula (19) and it is assumed that A3 is defined according
to (30).
In addition, equations (33) must necessarily be supplemented with equations describing
the evolution of the matrices Q and Θ; they have the form

Q̇ij = ∑
k,l

εiklQkj
∂H

∂ml

, Θ̇ij = ∑
k,l

εiklΘkj
∂H

∂ µl

. (35)
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Equations (33) and (35) form a Hamiltonian system with eight degrees of freedom and
uncanonical Poisson brackets,

{Ai,pj}= δij, {mi,mj}= εijkmk, {µi,µj}= εijkµk, (36)

{mr,Qjk}= εiklQjl, {µi,Θjk}= εiklΘjl, (37)

where zero brackets are omitted.

Remark

The elimination of one semiaxis (30) results in the loss of symmetry of the
Hamiltonian (34); therefore, the equations for the semiaxes Ai are normally left in the
Lagrangian form with an undetermined multiplier [1, 2].

[1] Riemann, B., Ein Beitrag zu den Untersuchungen über die Bewegung einer flüssigen
gleichartigen Ellipsöıdes, Abh. d. Königl. Gesell. der Wiss. zu Göttingen, 1861.

[2] Chandrasekhar S., Ellipsoidal Figures of Equilibrium, New Haven, London: Yale University

Press, 1969.
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It can be seen from the above relationships that the system of equations (33), which
describes the evolution of the variables Ai,pi,m, and µ, separates; in addition, the
Poisson bracket of these variables, (36), also proves to be closed. It is not difficult to
show that that equations (33) describe a system reduced over the symmetry group (24).
Limitation: the brackets (36) obviously have two Casimir functions,

Φm = (m,m), Φµ = (µ,µ), (38)

and have a rank of eight (provided that Φm 6= 0,Φµ 6= 0).
Therefore, the reduced system has generally four degrees of freedom.
In particular cases where one of the integrals (38) is zero, the reduced system has three
degrees of freedom. These are so-called irrotational (Φµ = 0) and momentum-free
(Φm = 0) ellipsoids.
If both of the integrals (38) vanish, the reduced system has two degrees of freedom and
describes oscillations of the ellipsoid without changes in the directions of the axes and
without inner flows (this case will be considered below in detail).
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Axisymmetric Case (Dirichlet [1])
It can easily be shown that the equations of motion determined by the Lagrangian
function (23) admit a (two-dimensional) invariant manifold that consists of matrices of
the form

G =

∥∥∥∥∥∥

u v 0

−v u 0

0 0 w

∥∥∥∥∥∥
,

where detG = (u2 +v2)w = v0 = const is the volume of the ellipsoid. This manifold
corresponds to an axisymmetric motion of the fluid ellipsoid (see [1]). In this case, the
matrix of the principal semiaxes is

A = (GGT )1/2 = diag(
√

u2 +v2,
√

u2 +v2,w).

In view of the condition detG = v0, we make the substitution of variables

u = v
1/3

0 r cosψ, v = v
1/3

0 r sinψ, w =
v

1/3

0

r2

and find that the Lagrangian function (23) is

L = v
2/3

0

((
1+

2

r6

)
ṙ2 + r2ψ̇2 +Us

)
,

[1] Dirichlet, G. L., Untersuchungen über ein Problem der Hydrodynamik (Aus dessen Nachlass

hergestellt von Herrn R. Dedekind zu Zürich), J. reine angew. Math. (Crelle’s Journal), 1861,

Bd. 58, S. 181–216.
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where

Us =−2ε
v0

∞∫

0

dλ
(λ + r2)

√
λ +1/r4

=−2ε
v0

r2 ×





2arctg
√

r6 −1√
r6 −1

, r > 1,

ln
(

1+
√

1−r6

1−
√

1−r6

)

√
1− r6

, r < 1.

The variable ψ is cyclic; therefore, we have a first integral of the form

pψ =
1

v
2/3

0

∂L

∂ψ̇
= 2r2ψ̇,

which coincides within a multiplier with the single nonzero component of the momentum
M′

12 (18). With the use of the energy integral (19), we obtain a quadrature that specifies
the evolution of r: (

1+
2

r6

)
ṙ2 = h−U∗, U∗ = Us +

c

r2
,

where h = E

mv
2/3

0

and c =
pψ
4 are fixed values of the energy and momentum integrals. The

minimum of the reduced potential U∗ corresponds to the Maclaurin spheroid.
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Riemannian Case [1]
There is an invariant manifold more general than the above-described one. It is specified
by the block–diagonal matrix of the general form

G =

∥∥∥∥∥∥

u1 v1 0

u2 v2 0

0 0 w3

∥∥∥∥∥∥
. (39)

We compute the integrals (??) and (18) obtaining

M′
12 = u1u̇2 −u2u̇1 +v1v̇2 −v2v̇1, M′

23 = M′
13 = 0,

ξ ′
12 = u1v̇1 −v1u̇1 +u2v̇2 −v2u̇2, ξ ′

23 = ξ ′
13 = 0,

It is also obvious that iQ and Θ have in this case a block–diagonal form similar to (39);
therefore, this case corresponds to that noted by Riemann, for which, in equations (33),
we should set

m1 = m2 = 0, m3 = const,

µ1 = µ2 = 0, µ3 = const.

[1] Riemann, B., Ein Beitrag zu den Untersuchungen über die Bewegung einer flüssigen

gleichartigen Ellipsöıdes, Abh. d. Königl. Gesell. der Wiss. zu Göttingen, 1861.
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Thus, we obtain a Hamiltonian system with two degrees of freedom, which describes the
evolution of the principal semiaxes A1 and A2; its Hamiltonian is

H =
1

2

A−2
3 (p2

1 +p2
2)+(p1A−1

2 −p2A−1
1 )2

∑A−2
i

+U∗(A1,A2), (40)

where the reduced potential is

U∗ = Ue +
c2

1

(A1 −A2)2
+

c2
2

(A1 +A2)2
,

and c2
1 =

1
4 (m3 +µ3)

2, c2
2 =

1
4 (m3 −µ3)

2 are fixed constants of the integrals.
The particular version of the system (40) for c1 = c2 = 0 (i. e., for invariable directions of
the principal axes of the ellipsoid) was also noted by Kirchhoff [1], who suggested that
the problem does not reduce to quadratures.
At U∗ = 0, the Hamiltonian (40) describes a geodesic flow on the cubic A1A2A3 = const.
This remarkable analogy between two different dynamical systems was also noted by
Riemann.

[1] Kirchhoff, G., Vorlesungen über mathematische Physik. Mechanik, Leipzig: Teubner, 1876.
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Elliptic Cylinder (Lipschitz [1])
This case can be obtained through a limiting process in the Riemannian case, with one
axis of the ellipsoid going to infinity (A3 → ∞). It is, however, more convenient to start
with considering the case of a two-dimensional motion of fluid assuming that the matrix
F has the form

F =

∥∥∥∥
F̄ 0

0 1

∥∥∥∥ , det F̄ = 1, (41)

where F̄ is a 2×2 matrix with unit determinant.
Obviously, the considerations on which the derivation of the Dirichlet equations [2] was
based can be applied to this case without modifications; only the right-hand side of the
equations should be properly changed. To this end, it is necessary to use the well-known
representation of the potential of the interior points of the elliptic cylinder with a large
length l in the system of principal axes

U(ζ ) = ε̄

(
U0(l)−

ζ 2
1

A1(A1 +A2)
− ζ 2

2

A2(A1 +A2)

)
+O(1/l),

where ε̄ = Gm̄, G is the gravitational constant and m̄ = πρA1A2 is the mass per unit
length of the cylinder. The constant U0(l)−→

l→∞
∞ does not appear in the equations of

motion and can be omitted.
[1] Lipschitz, R., Reduction der Bewegung eines flüssigen homogenen Ellipsoids auf das
Variationsproblem eines einfachen Integrals, und Bestimmung der Bewegung für den Grenzfall
eines unendlichen elliptischen Cylinders, J. reine angew. Math. (Crelle’s Journal), 1874, Bd. 78,
S. 245–272.
[2] Lyapunov, A.M., Collected Works, Collected Works, Vol. 5,, Moscow: Izd. Akad. Nauk, 1965.31



By analogy with the above considerations, we pass to the Lagrangian representation and
make the substitution Ḡ = F̄Ā0, where Ā0 = diag(A0

1,A
0
2), to obtain the Lagrangian of the

system in the form

L =
1

2
Tr
(

˙̄G ˙̄GT
)
− Ūe,

Ūe =−2ε̄ ln(A1 +A2)
2 =−2ε̄ ln(Tr(ḠḠT)+2det Ḡ).

Based on the singular decomposition of the matrix Ḡ = Q̄T ĀΘ̄ with

Q̄ =

∥∥∥∥
cosφ −sinφ
sinφ cosφ

∥∥∥∥ , Θ̄ =

∥∥∥∥
cosψ −sinψ
sinψ cosψ

∥∥∥∥ , A =

∥∥∥∥
A1 0

0 A2

∥∥∥∥ ,

explicitly substituted, we obtain a Lagrangian function in the form

L =
1

2

(
Ȧ2

1 + Ȧ2
2 +(A1φ̇ −A2ψ̇)2 +(A2φ̇ −A1ψ̇)2

)
− Ūe(A1,A2).

We can see that the variables φ and ψ are cyclic, and there are two linear integrals

∂L

∂ φ̇
= pφ ,

∂L

∂ψ̇
= pψ . (42)
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We parametrize the relationship A1A2 = v̄0 using hyperbolic functions,

A1 = v̄
1/2

0 (chu+ sh u), A2 = v̄
1/2

0 (chu− sh u).

We use the energy integral and the integrals (42) to obtain a quadrature for the variable
u:

v̄0(ch2u)u̇2 = h− Ū∗,

Ū∗ = 2ε̄ ln(chu)+
c̄2

1

ch2 u
+

c̄2
2

sh2 u
,

where c̄2
1 =

1
16 (pφ −pψ )

2, c̄2
2 =

1
16 (pφ +pψ )

2, and h are fixed constants of the first
integrals.
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Chaotic Oscillations of a Three-Axial Ellipsoid

Let us consider in more detail the oscillations (pulsations) of a fluid ellipsoid in the
Riemannian case (39). We now represent the equations of motion of the system (40) in a
Hamiltonian form most convenient for a numerical investigation of the system. We
parametrize the surface A1A2A3 = v0 using cylindrical coordinates

A1 = r cosφ , A2 = r sinφ , A3 =
2v0

r2 sin2 2φ
,

p1 = pr cosφ − pφ
r

sinφ , p2 = pr sinφ − pφ
r

cosφ
. (43)

The Hamiltonian (40) can be represented in the form

H =
1

2

(
1+

c2
0

r6 sin4 2φ

)−1(
p2

r +
p2

φ
r2

+
c2

0

r6 sin4 2φ

(
pr cos2φ − pφ

r
sin2φ

)2
)
+U∗(r,φ),

(44)
where c0 = 4v0.
Since the original system is defined in the quadrant A1 > 0,A2 > 0,A3 > 0, for this case
we have 0 < φ < π/2. In this system, the transformation of variables

ρ = r2, ψ = 2φ , (45)

enables obtaining the Hamiltonian in the form
34



H =
2(ρ2(c2

0 cos2 ψ +ρ3 sin4 ψ)p2
ρ + sin2 ψ(c2

0 +ρ3 sin2 ψ)p2
φ −2ρc2

0 cosψ sinψpψ pφ )

ρ(c2
0 +ρ3 sin4 ψ)

+

+U∗(ρ,ψ).
(46)

Upon passing to new Cartesian coordinates according to the formulas

x = ρ cosψ, y = ρ sinψ, (47)

we obtain

H = 2ρ

(
p2

x +
y4p2

y

y4 + c̄2
0ρ

)
+U∗(x,y), (48)

where ρ =
√

x2 +y2; obviously, the system (48) is defined in the upper semiplane (y > 0).
In this case, as we can see, the kinetic energy of the system has the simplest form.
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a) h c c= 1.15, = = 0- 1 2 b) h c c= 1.1, = = 0- 1 2

c) h c c= 1.09, = 0.1, = 0- 1 2 d) h c c= 1.07, = 0.1, = 0- 1 2

f) h c c= .9, = = 0-0 1 2
e) h c c= .9, = = 0-0 1 2
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y

py

y

py

y

py

y

py

y

py

y

Рис. 1: The Poincaré map of system (48). For all panels, c0 = 1,ε = 0,6; for the map, the planes
x = 1 (a–d) and x = 0.1 (e ,f) are chosen.
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Dynamics of a Gas Cloud with Ellipsoidal Stratification

The investigation of the dynamics of gas ellipsoids traces back to a study by
L. V.Ovsyannikov [1] (1956), who analyzed the most general equations describing the
motion of an ideal polytropic gas, without taking into account gravitation, with a velocity
field linear in the coordinates of the gas particles (from here on, by the gas ellipsoid, we
mean the Dirichlet solution generalized to various models of compressible fluid). Note
that the paper [1] is very brief and purely mathematical: in fact, the equations of motion
are obtained there, several possible cases of the existence of the considered solution are
noted, and an incomplete set of first integrals is given for two cases. It is interesting that
Ovsyannikov’s paper contains no references, so that the relationship between the
obtained solution and the Dirichlet solution is not revealed.
Later, D. Lynden-Bell [2] (1962) demonstrated, also without any references, the existence
of the solution in the form of a spheroid for a self-gravitating dust cloud (i. e., for a
medium not resisting to deformations, p ≡ 0).

[1] Ovsyannikov, L.V., A New Solution of the Equations of Hydrodynamics, Dokl. Akad. Nauk
SSSR (N.S.), 1956, vol. 111, pp. 47–49 (in Russian).
[2] Lynden-Bell, D., On the Gravitational Collapse of a Cold Rotating Gas Cloud, Proc. Camb.
Phys. Soc., 1962, vol. 58, pp. 709–711.

37



Ya. B. Zel’dovich [1] (1965) obtained the equations of motion of a self-gravitating dust
ellipsoid in the general case and studied (on a physical level of rigor) the possibility of
collapse and expansion in this problem. Likely, Ya. B. Zel’dovich also overlooked the
relationship of this problem to the Dirichlet – Riemann problem, since the model of a dust
cloud can be obtained simply by setting p = 0 in the Dirichlet equations.
Independently of Ovsyannikov (at least without a reference), F. Dyson [2] (1968)
obtained the equations of motion of an ideal-gas cloud in the case of an isothermal flow
(although without the assumption of a polytropic behavior of the gas); a Gaussian
density distribution with an ellipsoidal stratification was found. Dyson noted a
relationship between the obtained solution and the Dirichlet problem and wrote the
equations of motion of the gas ellipsoid in a Riemannian form.

[1] Zel’dovich, Ya. B., Newtonian and Einsteinian Motion of Homogeneous Matter, Astronom.
Zh., 1964, vol. 41, no. 5, pp. 872–883 [Soviet Astronomy, 1964, vol. 8, no. 5].

[2] Dyson, F. J., Dynamics of a Spinning Gas Cloud, J. Math. Mech., 1968, vol. 18, no. 1,

pp. 91–101.
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Also independently of Ovsyannikov, M. Fujimoto [1] (1968) describes a model of a
cooling ellipsoidal gas cloud; in essence, he obtains a generalization of a case considered
by Ovsyannikov (if we assume the cooling parameter to be æ = 0, we will obtain
Ovsyannikov’s equations). In addition, in Fujimoto’s model, the density is constant,
which enabled taking into account the gravitational interaction between the particles
of the cloud. Fujimoto also noted a relationship of this problem to the Dirichlet problem
and, in studying it, used the techniques developed by Chandrasekhar [2] and Rossner [3].

[1] Fujimoto, F., Gravitational Collapse of Rotating Gaseous Ellipsoids, Astrophys. J., 1968, vol.
152, no. 2 pp. 523–536.
[2] Chandrasekhar S., Ellipsoidal Figures of Equilibrium, New Haven, London: Yale University
Press, 1969.

[3] Rossner, L. F., The Finite-amplitude Oscillations of the Maclaurin Spheroids, Astrophys. J.,

1967, vol. 149, pp. 145–168.
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Let us also mention a study by Anisimov [1] (1970), who follows [2] and [3] considering
two cases of the integrable dynamics of a gas ellipsoid without allowances for gravitation
but with the additional condition of the monoatomic structure of the gas (a polytropic
index of γ = 5

3 ). The first case is the motion of an axisymmetric ellipsoid; the second, of
an elliptic cylinder. A nonautonomic Jacobi integral was found (which is due to the
uniformity of the potential with a uniformity degree of −2). This integral is essentially
necessary for integration in the cases under study; as we will show below, these systems
are not integrable in the general case.

[1] Anisimov, S.I. and Lysikov, Iu.I, Expansion of a Gas Cloud in Vacuum, Prikl. mat. mekh.,
1970, vol. 34, no. 5, pp. 926–929 [J. Appl. Math. Mech., 1970, vol. 34, no. 5, pp. 882–885].
[2] Ovsyannikov, L.V., A New Solution of the Equations of Hydrodynamics, Dokl. Akad. Nauk
SSSR (N.S.), 1956, vol. 111, pp. 47–49 (in Russian).

[3] Dyson, F. J., Dynamics of a Spinning Gas Cloud, J. Math. Mech., 1968, vol. 18, no. 1,

pp. 91–101.
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Bogoyavlenskĭı [1] (1976) analyzes the dynamics of a gas ellipsoid on a physical level of
rigor taking into account gravitation (i. e., he considers the Fujimoto model without
cooling). Explicit Lagrangian and Hamiltonian representations of the system are used.
Gaffet [2–4] shows that the system that describes irrotational gas ellipsoids without

considering gravitation, for a monoatomic gas
(

γ = 5
3

)
, satisfies the Painlevé property; in

these studies, first integrals are found and integration in quadratures is carried out for
certain particular cases.

[1] Bogoyavlenskij, O.I., Dynamics of a gravitating gaseous ellipsoid, Prikl. mat. mekh., 1976,
vol. 40, no. 2, pp. 270–280 [J. Appl. Math. Mech., 1976, vol. 40, no. 2, pp. 246–256].
[2] Gaffet, B., Expanding Gas Clouds of Ellipsoidal Shape: New Exact Solutions, J. Fluid Mech.,
1996, vol. 325, pp. 113–144.
[3] Gaffet, B., Sprinning Gas without Vorticity: the Two Missing Integrals, J. Phys. A: Math.
Gen., 2001, vol. 34, pp. 2087–2095.

[4] Gaffet, B., Sprinning Gas Clouds: Liouville Integrability, J. Phys. A: Math. Gen., 2001, vol. 34,

pp. 2097–2109.
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There are also studies analyzing a spherically symmetric motion of a gas cloud; one of
the most general solutions is described by Lidov [1], who considers time-dependent,
one-dimensional, spherically symmetric, adiabatic motions of a self-gravitating mass of a
perfect gas.
Nemchinov [2] uses a solution that describes the ellipsoidal expansion of a gas cloud to
find characteristic features of nonspherical explosions (in particular, he notes an increase
in the impact of the stream in the direction of one of the principal axes compared to a
similar spherical explosion); the effect of the heating of the cloud on the expansion speed
is also investigated.
Finally, let us mention a series of studies (see [3] and references therein) generalizing the
problem of the expansion of an ellipsoidal cloud to vacuum (or the collapse of an
ellipsoidal cavity) with the presence of a rarefaction (compression) wave.

[1] Lidov, M.L., Exact Solutions of the Equations of One-dimensional Unsteady Motion of a Gas,
Taking Account of the Forces of Newtonian Attraction, Doklady Akad. Nauk SSSR (N.S.), 1951,
vol. 97, pp. 409–410 (in Russian).
[2] Nemchinov, I.V., Expansion of a Tri-axial Gas Ellipsoid in a Regular Behavior, Prikl. mat.
mekh., 1965, vol. 29, no. 1, pp. 134—140 [J. Appl. Math. Mech., 1965, vol. 29, no. 1,
pp. 143–150].

[3] Deryabin, S.L., One-Dimension Escape of Self-Gravitating Ideal Gas Into Vacuum,

Computational technolgies, 2003, vol. 8, no. 4, pp. 32–44.
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FIGURES OF EQUILIBRIUM OF AN INHOMOGENEOUS
SELF-GRAVITATING FLUID

Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., Figures of Equilibrium of an Inhomogeneous

Self-Gravitating Fluid, Celest. Mech. Dyn. Astr. 2015, vol 122, pp. 1–26.
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For homogeneous fluid, the following ellipsoidal equilibrium figures for which the entire
mass uniformly rotates as a rigid body about a fixed axis are well known:

the Maclaurin spheroid (1742),
the Jacobi ellipsoid (1834),

In addition, in the case of a homogeneous fluid there also exist figures of equilibrium with
internal flows:

the Dedekind ellipsoid (1861),
the Riemann ellipsoids (1861).

Remark

The discovery of the Dedekind and Riemann ellipsoids was inspired by the work of [1]
where the dynamical equations for a liquid homogeneous self-gravitating ellipsoid were
obtained (for this system all the above-mentioned figures of equilibrium are fixed points).
For a recent review of dynamical aspects concerning liquid and gaseous self-gravitating
ellipsoids and a detailed list of references, see [2]. We also note the integrability cases
found in a related problem of gaseous ellipsoids [3].

[1] Dirichlet, G. L.: Untersuchungen über ein Problem der Hydrodynamik (Aus dessen Nachlass
hergestellt von Herrn R.Dedekind zu Zürich). J. Reine Angew. Math. (Crelle’s Journal) 58,
181–216 (1861).
[2] Borisov, A. V., Mamaev, I. S., Kilin, A. A.: The Hamiltonian Dynamics of Self-gravitating
Liquid and Gas Ellipsoids. Regul. Chaotic Dyn. 14(2), 179–217 (2009)

[3] Gaffet, B.: Spinning gas clouds: Liouville integrability. J. Phys. A Math. Gen. 34, 2097–2109

(2001).
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While an enormous amount of research was devoted in the 19th and 20th centuries to
asymmetric figures of equilibrium (see, e.g., references in [1–5]), the Maclaurin spheroid
remains the most important for applications to the theory of the figures of planets.
However, it is well known that for all planets of the Solar System the actual compression
is different from the compression of the corresponding Maclaurin spheroid obtained from
the characteristics of the planet. Usually this difference is attributed to the density
stratification of the planet and it necessitates investigating inhomogeneous figures of
equilibrium.
For a stratified fluid mass rotating as a rigid body with small angular velocity ω, Clairaut
(1743) obtained the equation of a spheroid which is an equilibrium figure to first order in
ω2. Subsequently investigations of such figures were continued in the work of Laplace,
Legendre and Lyapunov. Lyapunov obtained a final solution to this problem in the form
of a power series in the small parameter ω2 and found their convergence.

[1] Appell, P.: Traité de Mécanique Rationnelle: T. 4-1. Figures d’Équilibre d’une Masse liquide
Homogène en Rotation. Gautier-Villars, Paris (1921).
[2] Liouville, J.: Sur la Figure d’une Masse Fluide Homogène, en E’quilibre et Douée d’un

Mouvement de Rotation. J. de l’École Polytechnique 14, 289–296 (1834).
[3] Lyttleton, R. A.: The Stability of Rotating Liquid Masses. Cambridge University Press,
Cambridge (1953).
[4] Borisov, A. V., Mamaev, I. S., Kilin, A. A.: The Hamiltonian Dynamics of Self-gravitating
Liquid and Gas Ellipsoids. Regul. Chaotic Dyn. 14(2), 179–217 (2009).

[5] Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven

(1969).
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On the other hand, [1, 2] and [3, Chapter 12] showed that for a stratified fluid mass
rotating as a rigid body there exist no figures of equilibrium in the class of ellipsoids. We
present a modern formulation of a theorem which was proven in these works:

Теорема

Suppose the body consists of a self-gravitating, ideal, stratified fluid and the density ρ is
not constant along the volume. Assume that

– the free surface of the fluid is an ellipsoid (it can be both triaxial and a spheroid),

– the density distribution ρ(r) is such that the level surfaces ρ(r) = const are ellipsoids
coaxial with the outer surface.

Then such a fluid mass configuration cannot be the figure of equilibrium rotating as a
rigid body about one of the principal axes.

[1] Hamy, M.: Étude sur la Figure des Corps Célestes. Ann. de l’Observatoire de Paris. Mémories
19, 1–54 (1889).
[2] Volterra, V.: Sur la Stratification d’une Masse Fluide en Equilibre. Acta Math. 27(1), 105–124
(1903).

[3] Pizzetti, P.: Principii della Teoria Meccanica della Figura dei Pianeti. Enrico Spoerri,

Libraio-Editore, Pisa (1913).
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Hamy proved this theorem for the case of a finite number of ellipsoidal layers with
constant density, Volterra generalized this result to the case of continuous density
distribution for a homothetic stratification of ellipsoids, and Pizzetti gave the simplest
and most rigorous proof in the general case for both continuous and piecewise constant
density distribution. We also mention the paper [1], which proposes higher-order
corrections for finding the figures of equilibrium with stratified density. Such publications
show that there is still no complete understanding regarding the equilibrium figures of
celestial bodies with stratified density. We also note that [2] also attempted to prove this
theorem for the case of continuous density distribution but made some errors.

[1] Kong, D., Zhang, K., Schubert, G.: Shapes of Two-Layer Models of Rotating Planets. J.
Geophys. Res. 115(E12), doi:10.1029/2010JE003720 (2010).

[2] Véronnet A.: Rotation de l’Ellipsoide Hétérogène et Figure Exacte de la Terre. J. Math. Pures

et Appl., Sér. 6 8, 331–463 (1912.)
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If one admits the possibility that the angular velocity of fluid particles is not constant for
the entire fluid mass, then equilibrium figures for an arbitrary axisymmetric form of the
surface and density stratification [1, Chapter 9] are possible. For example, [2] explicitly
showed a spheroidal equilibrium figure with a nonuniform distribution of angular velocities
for the case of homothetic density stratification. It turns out that the surfaces with equal
density ρ(r) = const. do not coincide with the surfaces of equal angular velocity
ω(r) = const. S. A. Chaplygin tried to use the resulting solution to explain the dependence
of the angular velocity of rotation of the outer layers of the Sun on the latitude.
In [3] an explicit solution of another kind was found for which the equilibrium figure is a
spheroid consisting of two fluid masses of different density ρ1 6= ρ2 separated by the
spheroidal boundary confocal to the outer surface, with each layer rotating at constant
angular velocity such that ω1 6= ω2. A generalization of this solution to the case of an
arbitrary finite number of “confocal layers” was obtained by [4].

[1] Pizzetti, P.: Principii della Teoria Meccanica della Figura dei Pianeti. Enrico Spoerri,
Libraio-Editore, Pisa (1913).
[2] Chaplygin, S. A.: Steady-State Rotation of a Liquid homogeneous spheroid In Collected works:
Vol. 2. Hydrodynamics. Aerodynamics. Gostekhizdat, Moscow (1948).
[3] Montalvo, D., Mart́ınez, F. J., Cisneros, J.: On Equilibrium Figures of Ideal Fluids in the Form
of Confocal Spheroids Rotating with Common and Different Angular Velocities. (1982).

[4] Esteban, E. P., Vasquez, S.: Rotating Stratified Heterogeneous Oblate Spheroid in Newtonian

Physics. Celestial Mech. Dynam. Astronom. 81(4), 299–312 (2001).
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In this paper we obtain a generalization of this solution to the case of an arbitrary
confocal (both continuous and piecewise constant) density stratification. For comparison,
we also present Chaplygin’s solution for the homothetic stratification. In addition, we
show that in the case of a space with constant curvature the homogeneous (curvilinear)
spheroid is a figure of equilibrium only under the condition of a nonuniform distribution
of the angular velocities of fluid particles ω(r) 6= const. In this case the solution can be
represented as a power series in the space curvature.
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Equations of motion and axisymmetric equilibrium figures

In this case, to solve specific problems, it is convenient to use special curvilinear
(nonorthogonal) coordinates, which we denote by q = (q1,q2,q3). Therefore, we first
represent the equations describing this system in an appropriate form.
Suppose that an element of the fluid has coordinates q at a given time t. Let
q̇=(q̇1, q̇2, q̇3) denote the rates of change of its coordinates during the motion. They
depend on both the coordinates q of the chosen element and time t: q̇i = q̇i(q, t) and the
total derivative of any function f of q, and t is calculated from the formula

df

dt
=

∂ f

∂ t
+∑

i

∂ f

∂qi
q̇i. (49)

Let G= ‖gij‖ denote the metric tensor corresponding to these coordinates. In the case of

orthogonal coordinates G= diag(h2
1,h

2
2,h

2
3), where hi are the Lamé coordinates.

As is well known [1], the equations of motion for a fluid in a potential field can be
represented as

d

dt

(
∂T

∂ q̇i

)
− ∂T

∂qi
=−∂U

∂qi
− 1

ρ
∂p

∂qi
, (50)

where ρ is the density, p is the pressure, U is the specific potential of external forces, and
T is the specific kinetic energy of the fluid calculated from the formula T = 1

2 ∑
i,j

gijq̇iq̇j.

[1] Kochin, N. E., Kibel, I. A., Rose, N. V. Theoretical Hydromechanics (in Russian), Vol. 1.

Fizmatgiz, Moscow (1963).
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The continuity equation written in this notation become

∂ρ
∂ t

+
1

g
∑

i

∂
∂qi

(ρgq̇i) = 0, g =
√

detG. (51)

In the case of a self-gravitating fluid the gravitational potential U(q, t) can be calculated
from the equation

∆U = 4πGρ(q, t), (52)

where G is the universal gravitational constant and the Laplacian is given by the
well-known relation

∆ =
1

g
∑ ∂

∂qi

(
ggij ∂

∂qj

)
, ‖gij‖= G

−1,

assuming that outside the liquid body the density vanishes: ρ = 0.
In the absence of external influences at the free boundary ∂B of the fluid mass the
pressure vanishes:

p
∣∣
∂ B

= 0,

and the gravitational potential and its normal derivative are continuous:

Uin

∣∣
∂ B

= Uout

∣∣
∂ B

,
∂Uin

∂n

∣∣∣∣
∂ B

=
∂Uout

∂n

∣∣∣∣
∂ B

, (53)

where the indices in and out denote the quantities inside and outside the body,
respectively (note that not only normal, but all first derivatives are continuous, even if
the density is discontinuous).
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Steady-state axisymmetric flows
To explore possible figures of equilibrium, we choose curvilinear coordinates q = (r,µ,ϕ),
which are related to the Cartesian coordinates as follows

x = r cosϕ, y = r sinϕ, z = Z(r,µ).

Here the function Z(r,µ) is chosen so as to obtain a free surface of the fluid mass for one
of the values µ = µ0. Its specific form will be defined by an appropriate problem
statement. The metric tensor is given by

G=




1+Z2
r ZrZµ 0

ZrZµ Z2
µ 0

0 0 r2


 , g =

√
detG= rZµ ,

where Zr =
∂ Z
∂ r

, Zµ = ∂ Z
∂ µ .
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We shall seek a steady-state solution of (50), for which the velocity distribution has the
form

ṙ = 0, µ̇ = 0, ϕ̇ = ω(r,µ), (54)

and the functions U, p, and ρ do not depend on ϕ. Then, substituting (54) into (50) and
(52), we obtain the system of equations

∂ U
∂ r

+ 1
ρ

∂ p
∂ r

= rω2, ∂ U
∂ µ + 1

ρ
∂ p
∂ µ = 0,

∆rµ U = 4πGρ(r,µ),

∆rµ = 1
rZµ

∂
∂ r

(
rZµ

∂
∂ r

)
+ 1

Zµ
∂

∂ µ

(
1+Z2

r

Zµ
∂

∂ µ

)
− 1

rZµ

(
∂
∂ r

(
rZr

∂
∂ µ

)
+ ∂

∂ µ

(
rZr

∂
∂ r

))
,

p(r,µ)
∣∣
µ=µ0

= 0.

(55)

Note that the continuity equation (51) holds identically.
We choose the function Z(r,µ) defining the curvilinear coordinates in such a way that all
coordinate surfaces µ = const are compact, and choose a value of µ = µ0 which
corresponds to the boundary of the fluid and defines the distribution of density ρ(r,µ).
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Then, according to (55), after solving the equation for the potential one can always
choose a distribution of pressure and of the squared angular velocity, which satisfy the
first pair of equations:

p(r,µ) =−
µ∫

µ0

ρ ∂ U
∂ µ dµ,

ω2(r,µ) = 1
rρ

(
ρ0

∂ U
∂ r

(r,µ0)+
µ∫

µ0

(
∂ U
∂ r

∂ ρ
∂ µ − ∂ U

∂ µ
∂ ρ
∂ r

)
dµ

)
, ρ0 = ρ(r,µ0).

A possible obstruction to the existence of such equilibrium figures is that ω2(r,µ),
defined from these equations, may turn out to be negative. The problem of equilibrium
figures becomes more nontrivial when we impose some restrictions on the distribution of
angular velocity.
L. Lichtenstein and R.Wavre found sufficient conditions under which a fluid-filled region
obviously possesses a plane of symmetry, see, for example, [1].

[1] Lichtenstein, L.: Gleichgewichtsfiguren Rotierender Flüssigkeiten. Springer, Berlin (1933).
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Теорема

Assume that for an inhomogeneous self-gravitating mass of perfect fluid the following is
satisfied:

1. the fluid is at relative equilibrium where all particles rotate about the fixed axis Oz,
and their angular velocity depends only on the distance to the axis of rotation:
ω = ω(r 2),

2. the density is a piecewise continuous function,

3. the fluid-filled region consists of a finite number of disjoint bounded (homogeneous
or inhomogeneous) fluid volume whose boundaries are homeomorphic to spheres or
tori.

Then the fluid-filled region possesses a plane of symmetry perpendicular to the axis Oz.

It is also obvious that the center of mass lies on the intersection of the symmetry plane
with the axis of rotation Oz.
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Inhomogeneous figures with isodensity distribution of the angular

velocity of layers

General equations for locally nonconstant and locally constant density distributions
We now consider the case where the level surfaces of stratification of density ρ coincide
with the level surfaces of angular velocity ω (i.e., the fluids of equal density move with
equal angular velocity); choosing them as coordinate lines µ = const, we represent this
condition as

ρ = ρ(µ), ω = ω(µ). (56)

Eliminating the pressure from the first pair of equations of the system (55) (multiplying
them by ρ and differentiating the first one with respect to µ and the second one with
respect to r and subtracting one from the other), we obtain

ρ ′(µ)
∂U(r,µ)

∂ r
= r
(
ρ(µ)ω2(µ)

)′
, (57)

where the prime denotes the derivative with respect to µ.
Let us consider the main consequences of this equation (expressing the restrictions to the
gravitational potential inside the figure), which result from the conditions of mechanical
equilibrium. We see that according to (57) it is necessary to analyze two cases separately.
In the first of the cases we assume that ρ ′(µ) vanishes only at isolated points, in the
second case we have to consider a situation where on the whole interval ρ(µ)≡ 0,
µ ∈ (µ1,µ2). Let us consider them in succession.
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1. The case of locally nonconstant density. If we assume that in some interval
µ ∈ (µ1,µ2)

ρ ′(µ) 6= 0, inside.

then, according to (57), the potential U in this volume of fluid can be written as

U(r,µ) =
1

2
u(µ)r2 +v(µ). (58)

If ρ ′(µ∗) = 0 at some isolated point µ∗, then on the left and right of µ∗ the potential is
represented in the form (58), and due to continuity of U(r,µ) the limits of the functions
u(µ) and v(µ) in µ∗ on the left and right coincide. In this case, if ρ(µ∗) 6= 0, then the

equation
dω2(µ)

dµ

∣∣∣
µ=µ∗

= 0 holds for the angular velocity ω of this layer. From the first

pair of equations (55), we obtain the unknowns p(r,µ) and ω(µ) in the form

p =− 1
2 P(µ)r2 −Q(µ), ω2(µ) = u(µ)− P(µ)

ρ(µ) ,

P(µ) =
µ∫

µ0

u′(ξ )ρ(ξ )dξ , Q(µ) =
µ∫

µ0

v′(ξ )ρ(ξ )dξ .
(59)

Obviously,

p(r,µ)
∣∣∣
µ=µ0

= 0,
dω2

dµ

∣∣∣∣
µ=µ0

= 0.
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Hence, it follows that the figure of equilibrium of a fluid with density stratification and
angular velocity of the form (56) exists if and only if there exist functions Z(r,µ) and
u(µ), v(µ) satisfying the equation

∆r,µ

(
1

2
u(µ)r2 +v(µ)

)
= 4πGρ(µ), (60)

and the potential inside the fluid mass has the form (58).
2. The case of locally constant density. We now consider a situation where in some layer
the density takes a constant value:

ρ(µ) = ρ0 = const, µ ∈ (µ1,µ2),

then, according to (57), we conclude that the angular velocity of the entire layer is also
constant:

ω(µ) = ω0 = const, µ ∈ (µ1,µ2).

Taking this result into account, we integrate the first pair of equations (55) and obtain
the following relation for the function U+ p

ρ0
in the layer:

U+
p

ρ0
=

1

2
ω2

0 r2 +Φ0, Φ0 = const. (61)
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Рис. 2: Distribution with a
layer on which the density
takes a constant value

Furthermore, at
all points at the boundaries of the layer µ = µi, i = 1,2 (see
Fig. 2) the pressure inside and outside must be the same:

pin(r,µ)
∣∣∣
µ=µi

= pout(r,µ)
∣∣∣
µ=µi

. (62)

The potential in the layer also satisfies the Laplace equation

∆rµ Uin(r,µ) = 4πGρ0,

and at the boundaries
conditions (53) hold. In principle, in the general case
an inhomogeneous figure of equilibrium can consist of parts,
with both locally constant and locally nonconstant density.
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The family of confocal spheroids
Consider a particular case in which the sought-for solution exists. We shall show that in
the case of confocal stratification of the density of a spheroid the gravitational potential
is written as (58).
Choose the parameterization of confocal stratification in R

3 as follows

x2 +y2

d2(1+µ2)
+

z2

d2µ2
= 1, µ ∈ [0,+∞),

where d is the focal distance of the meridianal section (see Fig. 3). Thus, the parameter
µ defines the ratio between the small semiaxis of the spheroid and the focal distance, and
the eccentricity e is expressed by the formula

e =
1√

1+µ2
. (63)

Expressing z, we find

Z(r,µ) =±
√

d2µ2 − r2
µ2

µ2 +1
. (64)
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Remark

It can be shown that for a prolate spheroidal stratification
(
i. e., for r2

d2µ2 +
z2

d2(µ2+1)
=1
)

this solution leads to a negative square of the angular velocity of rotation of the layers
(ω2(µ)< 0), therefore, we will not consider it.

Рис. 3: Meridional sections of
the surfaces µ = const

If the boundary of the spheroid filled with a fluid
has semiaxes a and b (see Fig. 3), then the focal distance
d and the coordinate of the boundary µ0 are defined by

d =

√
a2 −b2, µ0 =

b√
a2 −b2

. (65)
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Proposition

The gravitational potential for a spheroid with confocal stratification has the form

U =
k

2

(
1

2

r2ũ(µ)
1+µ2

+d2ṽ(µ)
)
, k = 4πG. (66)

For the internal points

ũ in = I0(µ)((1+3µ2)arcctg(µ)−3µ)− I1(µ)(1+3µ2)

ṽ in =−I0(µ)((1+µ2)arcctg(µ)−µ)+ I1(µ)(1+µ2)+2I2(µ)
(67)

I0(µ) =
µ∫

0

ρ(ξ )(1+3ξ 2)dξ , I1(µ) =
µ∫

µ0

ρ(ξ )((1+3ξ 2)arcctg(ξ )−3ξ )dξ ,

I2(µ) =
µ∫

µ0

ξρ(ξ )dξ .

For the external points

ũ out = I0(µ0)((1+3µ2)arcctg(µ)−3µ), ṽ out = I0(µ0)(µ − (1+µ2)arcctg(µ)). (68)
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We note that no assumptions about differentiability of the distribution of ρ(µ) were used
in proving this proposition. Therefore, this result holds for any (including piecewise
constant) distribution for which the integrals (67) converge.
Now, using the representations (67) and (66) for the potential inside the figure, we can
find ω(µ) and p(r,µ) from the equilibrium conditions (see the first pair of equations in
(55)). Finally, integrating by parts, we obtain the following theorem.
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Theorem

Suppose that an inhomogeneous perfect fluid fills an oblate spheroid with the semiaxes

a0 = d(1+µ2
0 )

1
2 , b0 = dµ0 and that the surfaces of constant density of the fluid coincide

with the family of confocal ellipsoidal surfaces with the semiaxes a = d(1+µ2)
1
2 and

b = dµ, µ ∈ [0,µ0]. Then, for each density distribution ρ: [0,µ0]→ R, there is a stationary
motion such that each ellipsoidal surface of the family moves as a rigid body around the
common axes with the angular velocity

ω(µ)2

2πG
= I0(µ0)

ρ(µ0)

ρ(µ)
(1+3µ2

0 )arcctg(µ0)−3µ0

1+µ2
0

−

− 2

ρ(µ)

µ0∫

µ

ρ ′(ξ )
I0(ξ )((1+3ξ 2)arcctg(ξ )−3ξ )− I1(ξ )(1+3ξ 2)

1+ξ 2
dξ ,

(69)

and with the pressure distribution

p(r,µ) = 4πG

∫ µ

µ0

ρ(ξ )
(

r2

(1+ξ 2)2
−d2

)
(I0(ξ )(1−ξ arcctg(ξ ))+ I1(ξ )ξ )dξ . (70)
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The homogeneous Maclaurin spheroid
Let the density be constant everywhere inside some spheroid:

ρ(µ) =

{
0, µ0 < µ,
ρ0, 0 < µ ≤ µ0,

where µ0 is defined by (65). In this case we find the gravitational potential from
Proposition 1. Inside the spheroid it can be represented as

U = 2πG

(
1

2

r2ũin(µ)
1+µ2

+d2ṽin(µ)
)
,

uin(µ) = ρ0

(
µ0(1+3µ2)((1+µ2

0 )arcctg µ0 −µ0)−2µ2
)
,

vin(µ) = ρ0(1+µ2
0 )
(
µ2 −µ0(1+µ2)arcctg µ0

)
.

Comparing this expression with (66) and (68) as a consequence of this representation of
the potential, we obtain the well-known Maclaurin theorem [1] in the case of a spheroid.

[1] Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven

(1969).
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Theorem

The gravitational potential that is produced by an inhomogeneous spheroid with confocal
stratification and density ρ(µ) at the external point is the same as the potential of a
homogeneous spheroid with the density

ρ0 = 〈ρ〉= 1

µ0(1+µ2
0 )

µ0∫

0

(1+3ξ 2)ρ(ξ )dξ . (71)

Next, from (69) and taking into account the relationship (63) between µ 0 and the
eccentricity, we obtain the well-known expression for the angular velocity ω0 of the
Maclaurin spheroid

ω2
0

2πGρ0
= µ0

(
(1+3µ2

0 )arcctg µ0 −3µ0

)
=

√
1−e2

e3

(
(3−2e2)arcsine−3e

√
1−e2

)
. (72)

Using (70), we find the pressure for the Maclaurin spheroid:

p

2πGρ2
0

=
(µ2

0 −µ2)(1−µ0 arcctg µ0)

1+µ2
(d2(1+µ2)(1+µ2

0 )− r2). (73)

It can be shown that the level surfaces (73) are homothetic spheroids. Using (64) and
a relation defining the homothetic stratification, which in our case takes the form
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r2

d2(1+µ2
0 )

+
z2

d2µ2
0

= m,

we find

r =
d2(1+µ2

0 )(1+µ2)(mµ2
0 −µ2)

µ2 −µ2
0

.

Then, substituting r into (73), we obtain
p

2πGρ2
0

= d2µ2
0 (1+µ2

0 )(1−µ0 arcctg µ0)(1−m).

If we compare the expressions (72) and (69) for µ = µ0, then we obtain the following
result:

Theorem

For an arbitrary confocal stratification the angular velocity on the outer surface of the
inhomogeneous spheroid is the same as the angular velocity ω 0 of the Maclaurin
spheroid with density ρ0 = 〈ρ〉:

ω2
0

2πG〈ρ〉 = µ0((1+3µ2
0 )arcctg(µ0)−3µ0), (74)

where 〈ρ〉 is the average density of the spheroid (71).

Thus, we see that for any confocal stratification the rotation of the body (planet) does
not differ visually from from that of the Maclaurin spheroid. 67



The Chaplygin problem — a spheroid with homothetic density

distribution

Рис. 4: Meridional sections of the surfaces
σ = const with homothetic stratification

As is well known,
the homothetic stratification is given by

z2

b2
+

r2

a2
= σ , σ ∈ [0,+∞),

where, assuming that a

and b are the principal semiaxes of a spheroid
filled with a fluid (see Fig. 4), we obtain

σ0 = 1, Z(r,σ) =±b

√

σ − r2

a2
.

Again we set

ρ =

{
ρ(σ) (does not depend on r), σ ≤ 1,
0, σ > 1.

68



Using the second of Eqs. (55) and noting that p
∣∣
σ=1

= 0, we obtain the pressure, which
can be represented as

p(r,σ) = ρ1U(r,1)−ρ(σ)U(r,σ)+

σ∫

1

U(r,σ)
∂ρ
∂σ

dσ , ρ1 = ρ(1).

In a similar manner, substituting the pressure from the first of Eqs. (55), we obtain

ω2(r,σ) =
1

rρ(σ)

(
ρ1

∂U

∂ r
(r,1)+

σ∫

1

∂U

∂ r
(r,σ)

∂ρ
∂σ

dσ
)
. (75)

Thus, to complete the solution, we only need to find the potential from the equation

∆r,σ U(r,σ) = 4πGρ(σ).
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In [1] a convenient integral representation of the potential for a (three-axial) ellipsoid
with homothetic density stratification is obtained. Applying it to the case of the spheroid
σ = 1 gives

Uin(r,z) = πGa2b2

∞∫

0

f (1)− f
(

r2

a2+s
+ z2

b2+s

)

∆(s)
ds,

Uout(r,z) = πGa2b2

∞∫

s0

f (1)− f
(

r2

a2+s
+ z2

b2+s

)

∆(s)
ds,

∆(s) = (a2 + s)
√

b2 + s,

(76)

where the function f (σ) is related with the density of the fluid by

ρ(σ) =
df (σ)

dσ
,

and the quantity s0 for given (r,z), which correspond to a point outside the liquid
spheroid, is defined as the root of the equation

r2

a2 + s0

+
z2

b2 + s0

= 1.

[1] Ferrers, N.M.: On the Potentials, Ellipsoids, Ellipsoidal Shells, Elliptic Laminae, and Elliptic

Rings, of Variable Densities. Quart. J. Pure Appl. Math. 14, 1–23 (1875).
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As an example, we consider the density distribution of the form

ρ(σ) = ρ0(1−ασn), n = 1,2,3. (77)

Given the average density 〈ρ〉 of the body and the ratio between the densities at the
center and on the surface η = ρ0

ρ1
, we now define the constants ρ0 and α:

α =
η −1

η
, ρ0 =

η(3+2n)〈ρ〉
3+2nη

. (78)

Set

η = 5,
b

a
=

1

2
.

Further, we find the potential from (76) and obtain the angular velocity from (75). The

meridional sections of the surfaces ω2

2πG〈ρ〉 = const with equal spacings for different

n = 1,2,3 are shown in Fig. 5. The graphs of change in the relation ω2

2πG〈ρ〉 along the

small semiaxis b is shown in Fig. 6.
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Рис. 5: Meridional sections of the surfaces ω2

2πG〈ρ〉 = const with equal spacings
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Рис. 6: The change of ω2

2πG〈ρ〉 along the small semiaxis b for different n
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For the densities from Figs. 5 and 6 one can draw the following conclusions:
1. The closer the center of the spheroid, the slower the change in the angular velocity.
2. For n = 1 the level surfaces near the center of the spheroid are concentric spheres.
Further, as n increases, the region in which the level lines are closed surfaces increases.
For n > 1 these closed surfaces are no longer surfaces of the second order.
Let us consider in more detail the angular velocity at the boundary of the spheroid at the
equator with densities of the form (77), but now with an arbitrary n. From (75), changing
the variable s = a2(t−1), we obtain the angular velocity on the surface:

ω2
n (r,1)

2πG
= ρ0e2

√
1−e2

∫ ∞

1

t−1

t2(t−e2)3/2

(
1− αt−n

(t−e2)n

(
(t−1)e2 r2

a2
+ t(1−e2)

)n
)

dt,

that is, for r = a we have

ω2
n (a,1)

2πG
= ρ0e2

√
1−e2

∫ ∞

1

(t−1)(1−αt−n)

t2(t−e2)3/2
dt.
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Explicitly integrating gives

ω2
n (a,1)

2πG
= ρ0ω2

m +
2αρ0e2

3+2n

(√
1−e2)(2n(1−e2)+3−2e2)

5+2n
F

(
3

2
,n+

5

2
,n+

7

2
,e2

)
−1

)
,

(79)
where ω2

m is the dimensionless angular velocity of the Maclaurin spheroid:

ω2
m =

√
1−e2

e3

(
(3−2e2)arcsine−3e

√
1−e2

)
.

Substituting the expression (79) into the relation for the angular velocity, we obtain for
two values of n

ω2
0 (a,1)

2πGρ0(1−α)
=

ω2
∞(a,1)

2πGρ0
= ω2

m.

Further, we shall define ρ0 and α from various known data for the Earth:
We are given the average density of the body 〈ρ〉= 5.51 g/cm3 and the ratio between
the densities on the surface and at the center ρ0

ρ1
= 5. In this case ρ0 and α are defined by

(79), and the dependence of the period of revolution at the equator T on n is shown in
Fig. 7(a).
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(a)

(b)

Рис. 7: The dependence of period T on n at the equator (a) for 〈ρ〉= 5.51 g/cm3 and ρ0
ρ1

= 5;

(b) for 〈ρ〉= 5.51g/cm3 and ε = 2.5

As can be seen in Fig. 7(a), T(n) reaches the minimum at the point
T(0.8675) = 24.1610 h.
We are given the average density of the body, 〈ρ〉= 5.51 g/cm3, and the ratio between
the density on the surface and the average density, ρ1

〈ρ〉 = ε = 2.5. The dependence of the

period of revolution at the equator T on n is shown in Fig. 7(b).
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The dependence of the period of revolution T on the polar radius r on the surface is
shown in Fig. 8.

Рис. 8: The dependence of period T on the polar radius on the surface of the inhomogeneous
spheroid 〈ρ〉= 5.51g/cm3 and ε = 2.16 for n = 1, n = 2 and n = 3.
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Figures of equilibrium in S3

One of the generalizations of the above results is that they are carried over to the spaces
of constant curvature S3 and L3, by analogy with celestial mechanics of point
masses [1–5]. There is a vast classical and recent literature on the dynamics of
gravitating point masses (see [6–10]), in which, for example, the well-known analogs of
the Kepler law and those of the three-body problem were studied.

[1] Borisov, A. V., Mamaev, I. S.: Poisson Structures and Lie Algebras in Hamiltonian Mechanics.
Izd. UdSU, Izhevsk (1999) (in Russian).
[2] Borisov, A. V., Mamaev, I. S.: The Restricted Two-Body Problem in Constant Curvature
Spaces. Celestial Mech. Dynam. Astronom. 96(1), 1–17 (2006).
[3] Killing, H.W.: Die Mechanik in den Nichteuklidischen Raumformen. J. Reine Angew. Math.
XCVIII(1), 1–48 (1885).
[4] Kozlov, V. V., Harin, A.O.: Kepler’s Problem in Constant Curvature Spaces. Celestial Mech.
Dynam. Astronom. 54(4) 393–399 (1992).
[5] Schrödinger, E.: A Method of Determining Quantum-Mechanical Eigenvalues and
Eigenfunctions. Proc. Roy. Irish Acad. Sect. A 46, 9–16 (1940).
[6] Albouy, A.: There is a Projective Dynamics. Eur. Math. Soc. Newsl. (89), 37–43 (2013).
[7] Borisov, A. V., Mamaev, I. S., Kilin, A. A.: Two-Body Problem on a Sphere. Reduction,
Stochasticity, Periodic Orbits. Regul. Chaotic Dyn. 9(3), 265–279 (2004).
[8] Borisov, A. V., Mamaev, I. S.: The Restricted Two-Body Problem in Constant Curvature
Spaces. Celestial Mech. Dynam. Astronom. 96(1), 1–17 (2006).
[9] Borisov, A. V., Mamaev, I. S.: Relations Between Integrable Systems in Plane and Curved
Spaces. Celestial Mech. Dynam. Astronom. 99(4), 253–260 (2007).

[10] Bizyaev, I. A., Borisov, A. V., Mamaev, I. S.: Figures of equilibrium of an inhomogeneous

self-gravitating fluid. Nonlinear Dynamics. 10(1), 73–100 (2014) (in Russian). 78



However, a particular generalization of the theorems of Newtonian potential to S3 and L3

was performed only in [1]. As will be shown below, in this case the problem of equilibrium
figures becomes considerably more complex. In particular, even in the case of
homogeneous ellipsoids the rigid body rotation of a fluid mass is impossible (we recall
that an ellipsoid in curved space is said to be a body obtained by the intersection of the
sphere S3 or the Lobachevsky space L3, embedded in R

4, with a conical quadric). One of
the difficulties is due to the fact that although some generalizations of Ivory’s theorem on
the potential of the elliptic layer [1] are possible, this and similar theorems cannot be
completely extended to S3 and L3 (they are closely related to the homogeneity of plane
space).

Remark

Generalizations of the problem of equilibrium figures to the relativistic case are also
possible, see, e.g., the review [2]. Unfortunately, attempts to obtain explicit analytical
exact solutions along these lines have yielded no results so far. This direction is a new
research area.

[1] Kozlov, V. V.: The Newton and Ivory Theorems of Attraction in Spaces of Constant
Curvature. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. (5), 43–47 (2000).

[2] Meinel, R., Ansorg, M., Kleinwachter, A., Neugebauer, G., Petroff, D.: Relativistic Figures of

Equilibrium. Cambridge University Press, Cambridge (2008).
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Steady-state axisymmetric solutions in S3

To explore possible figures of equilibrium in S3, we choose curvilinear coordinates, as was
done for the plane space E3. For convenience, we assume S3 to be embedded into E4,
then the transition to the coordinates under consideration has the form

x0 =±
√

R2 − r2 −Z2(r,µ), x1 = Z(r,µ), x2 = r cos(ϕ), x3 = r sin(ϕ),

where Z(r,µ) is defined, as before, by the specific problem statement. The metric tensor
can be represented as

G =




g11 g12 0

g12 g22 0

0 0 r2


 ,

where

g11 = 1−Z2
r +

(r+ZZr)
2

R2 − r2 −Z2
, g12 =

Zµ(rZ +(R2 − r2)Zr)

R2 − r2 −Z2
, g22 =

(R2 − r2)Z2
µ

R2 − r2 −Z2
.

We shall seek a steady-state solution for which the velocity distribution of fluid particles
has the form

ṙ = 0, µ̇ = 0, ϕ̇ = ω(r,µ).
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As above, assuming that the density depends only on µ and using the equations of
Section 2.1, we obtain the system

∂U

∂ r
+

1

ρ
∂p

∂ r
= rω2,

∂U

∂ µ
+

1

ρ
∂p

∂ µ
= 0,

△rµ U = 4πGρ(µ),

△rµ =
x0

rZµ

∂
∂ r

[
rZµ
x0

(
1− r2

R2

)
∂
∂ r

]
+

x0

Zµ

∂
∂ µ

[
1

x0Zµ

(
1+Z2

r −
(Z− rZr)

2

R2

)
∂

∂ µ

]
+

+
x0

rZµ

(
∂
∂ r

[
r

x0

(
Zr +

r(Z− rZr)

R2

)
∂

∂ µ

]
+

∂
∂ r

[
r

x0

(
Zr +

r(Z− rZr)

R2

)
∂

∂ µ

])
,

(80)

where x0 =
√

R2 − r2 −Z2(r,µ) and it is assumed that the density ρ(µ) vanishes
everywhere outside the body (µ0 < µ), and at the free boundary µ = µ0 the pressure is
zero as well:

p(r,µ)|µ=µ0
= 0.
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As we can see, the hydrodynamical equations remain the same as in E3. Therefore, their
solution inside the region (µ ≤ µ0) filled with fluid can be represented as

p(r,µ) = ρ0U(r,µ0)−ρ(µ)U(r,µ)+
µ∫

µ0

U(r,µ)
dρ(µ)

dµ
dµ, ρ0 = ρ(µ0),

ω2(r,µ) =
1

rρ(µ)


ρ0

dU

dr
(r,µ0)+

µ∫

µ0

dU

dr
(r,µ)

dρ(µ)
dµ

dµ


 .

(81)
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A homogeneous spheroid in S3

We now consider in more detail the case of a homogeneous spheroid, when, for µ ≤ µ0,
the density ρ(µ) = ρ0 = const. The generalization of confocal stratification in S3 is given
as follows:

x2
0

R2 −d2µ2
− x2

1

d2µ2
− x2

2 +x2
3

d2(1+µ2)
= 0, µ ∈

[
0,

R

d

]
.

Hence, we obtain

Z(r,µ) =±
√

d2µ2 − r2
R2 +d2

R2

µ2

1+µ2
.

As in the previous case, the parameter d and the boundary µ0 of a liquid spheroid with
the semiaxes a and b are given by

d =
√

a2 −b2, µ0 =
b√

a2 −b2
.

According to (81), in the case of a homogeneous spheroid dρ
dµ = 0, therefore, the angular

velocity of the fluid depends only on r:

ω2(r) =
1

r

∂U

∂ r
(r,µ0). (82)
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We shall seek solutions to the equation for the potential (80) in the form of a power

series in the parameter d2

R2 :

U(r,µ) = 2πGd2
∞

∑
n=0

(
d

R

)2n

Un(r,µ).

As can be shown, all terms of this series are polynomials in r. It is convenient to
represent them as

Un(r,µ) =
∞

∑
n=0

( r

d

)2m un,µ (µ)
2m(1+µ2)m

.

The potential U0(r,µ) is equal (up to a multiplier) to the potential of the Maclaurin
spheroid (see Section 65):

U0(r,µ) = u0,0(µ)+
r2

d2

u0,1(µ)
2(1+µ2)

,

inside the spheroid (µ ≤ µ0):

uin
0,0(µ) = ρ0(1+µ2

0 )
(
µ2 −µ0(1+µ2)arcctg µ0

)
,

uin
0,1(µ) = ρ0

(
µ0(1+3µ2)

(
(1+µ2

0 )arcctg µ0 −µ0

)
−2µ2

)
,

outside the spheroid (µ0 < µ):

uout
0,0(µ) = ρ0µ0(1+µ2

0 )
(
µ − (1+µ2)arcctg µ

)
,

uout
0,1(µ) = ρ0µ0(1+µ2

0 )
(
(1+3µ2)arcctg µ −3µ

)
.
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We shall assume that the space curvature is very small (R2 ≫ a2) and, therefore, restrict
ourselves to calculating the first correction

U1(r,µ) =
r4

d4

u1,2(µ)
4(1+µ2)2

+
r2

d2

u1,1(µ)
2(1+µ2)

+u1,0(µ),

where the functions u1,0(µ), u1,1(µ), and u1,2(µ) satisfy the equations

d

dµ

(
(1+µ2)

du1,2

dµ

)
−20u1,2 +16u0,1 = 0,

d

dµ

(
(1+µ2)

du1,1

dµ

)
−6u1,1 −µ(1+µ2)

du0,1

dµ
−6(2+µ2)u0,1 +8u1,2 +4ρ0(1+µ2) = 0,

d

dµ

(
(1+µ2)

du1,0

dµ

)
−2u1,1 −µ(1+µ2)

du0,0

dµ
+2µ2(u0,1 +ρ0(1+µ2)) = 0.

(83)
The functions u1,0, u1,1, and u1,2 must also satisfy the following boundary conditions:

duin
1,m

dµ

∣∣∣∣
µ=0

= 0, m = 0,1,2.

uin
1,m|µ=µ0

= uout
1,m|µ=µ0

,
duin

1,m

dµ

∣∣∣∣
µ=µ0

=
duout

1,m

dµ

∣∣∣∣
µ=µ0

, m = 0,1,2.

U1(r,µ)
∣∣
µ= R

d

= O(R2).
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Since the solution of the resulting system is rather unwieldy, we omit it here and confine
ourselves to the expression for the angular velocity of the fluid, for which, according
to (82), we find

ω2(r)

2πG
=

uin
0,1(µ0)

1+µ2
0

+
1

R2

(
uin

1,2(µ0)

(1+µ2
0 )

2
r2 +

uin
1,1(µ0)

1+µ2
0

d2

)
+O

(
d4

R4

)
.

Substituting the solution for uin
1,m(µ0) and expressing µ0 in terms of the eccentricity of

the boundary using the formula e = 1√
1+µ2

0

and d2 = a2 −b2, we obtain an explicit

representation for the angular velocity in the form

ω2(r)

2πGρ0

= ω00 +
1

R2

(
ω11r2 +ω10a2

)
+O

(
d2

R4

)
,

ω00 =−
√

1−e2

e

(
2− 3

e2

)
arcsine− 3

e2
(1−e2),

ω11 =−
√

1−e2

e

(
12− 30

e2
+

35

2e4

)
arcsine+

(
4

3
− 55

3e2
+

35

2e4

)
(1−e2),

ω10 =

√
1−e2

e

(
16− 27

2e2
+

10

e4

)
arcsine−

(
1

3
− 41

6e2
+

10

e4

)
(1−e2).

The graphs of dependence of each of the corrections for the angular velocity on the
eccentricity is presented in Fig. 9.
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Thus, in the space of constant (positive) curvature the homogeneous liquid
self-gravitating spheroid cannot rotate as a rigid body, and the angular velocity
distribution of fluid particles depends only on the distance to the symmetry axis:
ω = ω(r).

Рис. 9: Dependences of ω00, ω11, and ω10 on the eccentricity e.
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Remark

For completeness we also present the equations which describe axisymmetric figures of
equilibrium in curvilinear orthogonal coordinates (µ,ν,ϕ) and are defined as follows:

x2
0

d2
=

(δ −µ)(δ +ν)
δ +1

,
x2

1

d2
= µν, δ =

R2

d2

x2
2

d2
=

(1+µ)(1−ν)
δ +1

cos2 ϕ,
x2

3

d2
=

(1+µ)(1−ν)
δ +1

sin2 ϕ, 0 < µ < δ , 0 < ν < 1.

In this case the system (80) takes the form

∂U

∂ µ
+

1

ρ(µ)
∂p

∂ µ
=− δd2

2(δ +1)
(1−ν)ω2,

∂U

∂ν
+

1

ρ(µ)
∂p

∂ν
=

δd2

2(δ +1)
(1+µ)ω2,

∆µν U(µ,ν) = 4πGρ(µ),

R2∆µν =
4

µ +ν

(√
µ(δ −µ)

∂
∂ µ

(
(1+µ)

√
µ(δ −µ)

∂
∂ µ

)
+

+
√

ν(δ +ν)
∂

∂ν

(
(1−ν)

√
ν(δ +ν)

∂
∂ν

))
.

This form of equations is preferable if it is necessary to obtain a solution in terms of
quadratures (and not in the form of a power series).
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