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Introduction

A Kerr metric is a stationary and cylindrically symmetric solution of the Einstein
equations in vacuum. In the Boyer – Lindquist coordinates x = (t, r, θ, ϕ) the Kerr metric
is represented in the following form

gij =



∆(r)− a2 sin2 θ

ρ2
0 0

2ar

ρ2
sin2 θ

0 − ρ2

∆(r)
0 0

0 0 −ρ 0
2ar

ρ2
sin2 θ 0 0

sin2 θ

ρ2
(
∆a2 sin2 θ − (a2 + r2)2

)


,

where ρ2 = r2 + a2 cos2 θ and ∆(r) = r2 − 2r + a2. In the Kerr metric the coordinates r
and t are measured in the following units: Gm

c2
, Gm
c3
, where m is the mass of the celestial

body. The variables θ ∈ (0, π), ϕ ∈ [0, 2π) are angle variables. The dimensionless
parameter a is expressed in terms of the angular momentum of the celestial body Mz

relative to the symmetry axis as follows: a = cMz
Gm2 . If a = 0 (i.e., if there is no rotation),

the metric Kerr becomes a Schwarzschild metric.
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For large distances, i.e., for r � 1 the metric becomes the flat Minkowski metric:

ds2 = −dt2 +ρ2
(

dr2

r2 + a2
+ dθ2

)
+ (r2 +a2) sin2 θdϕ2 = −dt2 +dx2 +dy2 +dz2, (1)

where the Cartesian coordinates are given by the following relations:

x =
√
r2 + a2 sin θ cosϕ, y =

√
r2 + a2 sin θ sinϕ, z = r cos θ. (2)

As can be seen, for (1) the levels surfaces of the radial coordinate r = const with
t = const are confocal spheroids in the three-dimensional Euclidean space

x2 + y2

r2 + a2
+
z2

r2
= 1. (3)

Motion problem particles in the Kerr metric in the Newtonian limit (i.e., if |v| � c, where
v is the velocity of a particle) reduces to that of a point moving in the potential field

U = −G
2

(
m√

x2 + y2 + (z + ia)2
+

m√
x2 + y2 + (z − ia)2

)
,

two fixed gravitational centers "located at imaginary points"( this is a special case of the
Euler problem).

[8] Алексеев В.М. Обощенная пространственная задача двух неподвижных центров.
Классификация движений, Бюллетень Ин-та теор. астрономии. 1965. Т. 10, № 4
(117). с. 241-271.
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As is known, the Kerr metric has event horizon

Sh = {(t, r, θ, ϕ) | r = r+}, r+ = 1 +
√

1− a2, (4)

where r+ is the largest root of the equation ∆(r) = 0.
From a geometrical point of view, the horizon Sh determines an isotropic hypersurface
(null hypersurface) in spacetime whose section Sth is, for an external observer,
diffeomorphic to the two-dimensional sphere S2 at any instant of time t = const (since
the Kerr metric in the Boyer – Lindquist coordinates is stationary in these variables, the
sphere Sth does not depend on t). In addition, for each point at the event horizon Sh the
light cone (from the region of the future) lies entirely in the region r 6 r+, and hence the
world lines both of particles and of light beams will, after reaching r = r+, no longer be
able to return to the region r > r+.
Since the region r 6 r+ turns out to be inaccessible to the external observer, we will
throughout consider the motion of particles only outside the event horizon of the Kerr
metric.

(a) (b)

Рис. 1: A typical view of sections of the event horizon Sh: (a) sections formed by the intersection
with the plane z = 0, (b) sections formed by the intersection with the plane y = 0.
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Equations of motion

We use a natural parameterization of the trajectory of particle x(τ), where τ is the
proper time of the particle. Then the required trajectories satisfy equations:

dx

dτ
=
∂H

∂p
,

dp

dτ
= −∂H

∂x
, H =

1

2
gijpipj , (5)

where p = (pt, pr, pθ, pϕ) is the momentum of the particle and gij is the matrix inverse
to the metric.
The metric gij does not depend explicitly on time t and angle ϕ, therefore, they are
cyclic coordinates for equations (5). As a consequence, the corresponding momenta
remain unchanged:

E = −pt = const, L = pϕ = const.

From a physical point of view E is the energy of the material point and L is the
projection of its angular momentum onto the symmetry axis.
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Thus, the Hamiltonian system with two degrees of freedom decouples from the system

dpr
dτ

= −∂H
∂r

,
dpθ
dτ

= −∂H
∂θ

,
dr

dτ
=
∂H

∂pr
,

dθ

dτ
=
∂H

∂pθ
,

H =
1

2ρ2

(
p2r

∆(r)
+ p2θ

)
+ V,

V =
1

2∆(r)ρ2

(
−
(
∆(r)ρ2 + 2r(r2 + a2)

)
E2 + 4arEL+

(
∆(r)

sin2 θ
− a2

)
L2

)
.

(6)

and the phase space of this system has the form

M4 = {z = (pr, pθ, r, θ) | r ∈ (r+,+∞), θ ∈ (0, π)}.

The trajectories of the material particles lie on the fixed level set of the Hamiltonian

H = −1

2
.
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Explicit integration

In addition to the Hamiltonian H, the reduced system (6) has the additional Carter
integral:

F (z) = p2θ +

(
aE sin θ − L

sin θ

)2

− 2a2H(z) cos2 θ. (7)

Since both integrals of the system (6) turn out to be quadratic, it can, as is well known,
be integrated by the method of separation of variables. In this case, r and θ are
separating variables, and therefore, to reduce the problem to quadratures, we fix the
common level set of the Carter integral and the value of the Hamiltonian:

H(z) = −1

2
, F (z) = Q+ (L− aE)2, (8)

where Q is some constant.

Explicit integration 8 / 23



Now we express, taking into account (8) from (7), the momenta pr and pθ and substitute
them into the last two equations of motion of the system (6). As a result, we obtain
equations of motion for r and θ in the following form:(

dr

dτ

)2

=
1

ρ4
R(r),

(
dθ

dτ

)2

=
1

ρ4
Θ(θ),

R(r) =
(
E(r2 + a2)− aL

)2 − (Q+ (L− aE)2 + r2)∆(r),

Θ(θ) = Q− cos2 θ

(
a2(1− E2) +

L2

sin2 θ

)
.

(9)

The trajectories of the reduced system lie on two-dimensional integral submanifolds

M2
I =

{
(pr, pθ, r, θ) | H(z) = −1

2
, F (z) = Q+ (L− aE)2

}
, (10)

where I = (L,E,Q). Integral submanifold is represented as the product of a pair of
plane curves:

M2
I = C1r × C1θ ,

C1r = {(pr, r) | p2r = ∆2(r)R(r), r > r+}, C1θ = {(pθ, θ) | p2θ = Θ(θ), 0 < θ < π},
(11)

which depend on four parameters: a, L, E and Q. Consequently, the problem of
restructuringM2

I reduces to separately investigating the bifurcations of each of the
curves, C1r and C1θ .
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From the known solutions r(τ) and θ(τ) the evolution of the other variables is defined,
according to (5), using the quadratures

ρ2
dϕ

dτ
=

a

∆(r)

(
E(r2 + a2)− aL

)
− aE +

L

sin2 θ
,

ρ2
dt

dτ
=
r2 + a2

∆(r)

(
E(r2 + a2)− aL

)
+ aL− a2E sin2 θ.

(12)
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Analysis of the curve C1
θ

We first note that the equation for C1θ can be represented as

p2θ + Uθ = Q = const, Uθ = Q−Θ(θ) = cos2 θ

[
a2(1− E2) +

L2

sin2 θ

]
.

Since Uθ does not depend on Q, the analysis of the curves C1θ is entirely similar to
analysis of trajectories in the phase space R2 = {(θ, pθ)} for the Hamiltonian system
describing the motion of a material point in a potential field Uθ (the function Uθ is
sometimes called a latitudinal potential), and the constant Q is similar to the level set of
the energy integral. As is well known, ascertaining the type of these trajectories reduces
to analyzing the behavior of the function Uθ on the interval θ ∈ (0, π).
Firstly, we note that the function Uθ is symmetric about the straight line θ = π/2, i.e.,

Uθ
(π

2
+ x
)

= Uθ
(π

2
− x
)
.

Secondly, if θ = π/2, this function vanishes and simultaneously has a critical point:

Uθ
(π

2

)
= 0,

dUθ
dθ

∣∣∣∣
θ=π/2

= 0.

Thirdly, the numerator of the function is a fourth-order polynomial in the variable
u = cos θ. Therefore, in addition to the (multiple) roots, the function Uθ(u) can have a
pair of roots when θ = π/2 (u = 0).

Analysis of the curve C1
θ 11 / 23



Let us define the constant value

C1 = a2(E2 − 1)− L2,

which is proportional to the second derivative of the function Uθ in θ = π/2. Depending
on the sign of C1 and the value of L, four qualitatively different types of the function Uθ
are possible, each of which corresponds to the family of curves, which are parameterized
by the value of the integral Q.

(a) (b)

Рис. 2: A typical view of the latitudinal potential Uθ and the corresponding curves C1
θ on the

plane (θ, pθ) with L 6= 0 and different values of C1 for the fixed a = 0.3 and L = 1.
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Analysis of the curve C1
r

Since the function ∆(r) is always positive on the interval r ∈ (r+,+∞), the analysis of
the curve C1r reduces in fact to investigating the behavior of the zeroes of the function

R(r) =
(
E(r2 + a2)− aL

)2 − (Q+ (L− aE)2 + r2)∆(r) =

= (E2 − 1)r4 + 2r3 +
(
a2(E2 − 1)− L2 −Q

)
r2 + 2

(
Q+ (L− aE)2

)
r − a2Q

(13)

depending on the parameters a, Q, E and L.
This function is a fourth-degree polynomial and therefore has no more than 4 roots. We
also note that

R(r+) > 0, (14)

on the interval r ∈ (r+,+∞) the function R(r) can have:

— if E2 < 1, either 1 or 3 roots,

— if E2 > 1, either 0 or 2 roots.
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(a) (b)

Рис. 3: The function R(r) and the corresponding curves C1
r on the plane (r, pr) for the fixed

a = 0.3 with E < 1.
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(a) (b)

Рис. 4: The function R(r) and the corresponding curves C1
r on the plane (r, pr) for the fixed

a = 0.3, L = 4, Q = 1 with E > 1.
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r = rc = const which are critical points R(r)

R(rc) = 0,
dR

dr

∣∣∣∣
r=rc

= 0, rc > r+. (15)

This yields a surface in the space of first integrals R3
I which consists of two parts

Σr0 = Σr+ ∪ Σr−,

Σr+ = {(L,E,Q) | E = E+(rc, Q), L = L+(rc, Q), Q > 0} ,
Σr− = {(L,E,Q) | E = E−(rc, Q), L = L−(rc, Q), Q > 0} .

Remark 1
If Q = 0, then after simplifications the equations for Σr0 can be represented as

E± =
r
3/2
c − 2r

1/2
c ± a

r
3/4
c

(
r
3/2
c − 3r

1/2
c ± 2a

)1/2 ,
L± = ± r2c ∓ 2ar

1/2
c + a2

r
3/4
c

(
r
3/2
c − 3r

1/2
c ± 2a

)1/2 ,
(16)

where the upper sign refers to E+ and L+, and the lower sign, to E− and L−.
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Trajectories in the equatorial plane Q = 0

Рис. 5: Three possible types of phase portraits of the reduced system for a fixed value of L
(a = 0.3).
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Assume that the values of the integrals L and E lie in a region bounded by the curves Σr±
and E < 1, three roots of the polynomial R(r) lie on the interval (r+,+∞) in this case:

R(r) = (E2 − 1)(r − r(1)u )(r − r(2)u )(r − r(3)u )r, r+ < r(1)u < r(2)u < r(3)u .

and the segment [r
(2)
u , r

(3)
u ] defines bounded trajectories. We transform to the angle

variable ψ ∈ (0, 2π]:

r =
r
(3)
u − r(2)u

2
cosψ +

r
(3)
u + r

(2)
u

2
.

We finally obtain equations governing the motion on invariant tori T2 = {(ψ,ϕ)
mod 2π} in phase space in the following form:

dψ

du
= d
√

(Γ1 + cosψ)(Γ2 + cosψ),
dϕ

du
= Φ(ψ) = r

2aE + L(r − 2)

∆(r)

∣∣∣∣
r=r(ψ)

,

d =

√
1− E2

2
(r(3)u − r(2)u ), Γ1 =

r
(2)
u + r

(3)
u

r
(3)
u − r(2)u

> 1, Γ2 =
r
(2)
u + r

(3)
u − 2r

(1)
u

r
(3)
u − r(2)u

> 1.

(17)

It is the rotation number that allows one to classify the trajectories on T2 depending on
parameters. In this case the rotation number can be represented as

ρL,E = 2πd

 2π∫
0

Φ(ψ)dψ√
(Γ1 + cosψ)(Γ2 + cosψ)

−1

.
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(a) (b) (c)

(d) (e) (f)

(g)

Рис. 6: Curves for the fixed a = 0.95 on the plane L,E which correspond to the rational values
of the rotation number ρϕ/r, and the trajectories in the equatorial plane for the fixed E = 0.95
and different L.
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Рис. 7: Arrangement of bifurcation surfaces and curves in the space of first integrals R3
I for the

fixed a = 0.9. Gray denotes the region of possible values of L, E and Q.
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Trajectories of light rays
The trajectories of of light rays lie on the fixed level set of the Hamiltonian H = 0.(

dr

dτ

)2

=
1

E2ρ4
[
r4 + (a2 − λ2 − q)r2 + 2((a− λ)2 + q)r − a2q

]
,(

dθ

dτ

)2

=
1

E2ρ4
[
a2 cos2 θ − λ2 cot2 θ + q

]
,

λ =
L

E
, q =

Q

E2

(18)

Рис. 8: Trajectories of the system versus q for fixed λ = 4, a = 0.3.
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Ray tracing in case a = 0 (Schwarzschild)

Trajectories of light rays 22 / 23



Thank you for your attention!
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