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Abstract. We investigate the dynamics of particles in a Kerr metric which
describes the gravitational field in a neighborhood of a rotating black hole.
After elimination of cyclic coordinates this problem reduces to investigating
a Hamiltonian system with 2 degrees of freedom. This system possesses an
additional Carter integral quadratic in momenta and hence is integrable by
the Liouville— Arnold theorem. A bifurcation diagram is constructed and a
classification of the types of trajectories of the system is carried out according
to the values of first integrals.

Introduction

Integrability of the geodesic flow in a Kerr metric was established by Carter [4]
in 1968, and a large number of results have been obtained since then in this
problem, see, e.g., the reviews [7]. However, a complete bifurcation diagram has
been constructed recently in [2]. Using this diagram, an analysis of bifurcations of
different types of the system’s trajectories has been carried out for the case where
its parameter values are varied. In addition, a graphical representation of possible
types of motion depending on the values of the first integrals has been obtained.
In what follows, our analysis of the trajectories of a material point will be based
on [2].

At the same time, there are a number of particular results in this direction.
For example, bifurcation curves for plane orbits have been obtained for the critical
value of the Carter integral @ = 0 in [1] (in particular, r;sco (Innermost Stable
Circular Orbit) was found for the Kerr metric), and a corresponding diagram was
constructed in [8].

There are many other papers describing various special properties of (time-
like) geodesics of the Kerr metric. We mention some of them which are related to
our analysis. For example, in [3] the motion of particles falling from the state of
rest was examined, and the author of [5] found numerically trajectories making a
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large number of turns in the neighborhood of a black hole and then receding from
it (see also [6], where such orbits are called “zoom-whirl” orbits).

1. The Kerr metric

In the Boyer — Lindquist coordinates & = (t,, 0, ¢) the Kerr metric is represented
in the following form:
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where «, 5 =0, 1,2, 3, summation is implied over repeated indices, and the signa-
ture (1,3) has been chosen.

The dimensionless parameter a is expressed in terms of the angular momen-
tum of the celestial body M, relative to the symmetry axis as follows:
cM,
a = .
Gm?2

If @ = 0 (i.e., if there is no rotation), the metric (1) becomes a Schwarzschild
metric.

As a result, we obtain equations of motion for r and 6 in the following form:
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From a physical point of view, E is the energy of the material point, and L is the
projection of its angular momentum onto the symmetry axis of the metric, @Q is
constant Carter integral.

As can be seen, in order to integrate these equations in explicit form, one
needs to rescale time as dr = p?(r, 0)du.

From the known solutions r(7) and 6(7) the evolution of the other variables
is defined using the quadratures
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FIGURE 1. Curves for the fixed a = 0.95 on the plane L, E which
correspond to the rational values of the rotation number p, /.., and
the trajectories in the equatorial plane for the fixed £ = 0.95 and
different L.

2. Trajectories in the equatorial plane

Let the value of the Carter integral be zero, Q = 0. Then it follows from the analysis
of of the latitudinal motion that there exist trajectories lying in the equatorial
plane § = 7, and that all of them are critical (since in this case the latitudinal
potential has a critical point).

The system of equations, which governs the evolution of the angles v and

¢, defines a vector field on the torus T? without fixed points. It is the rotation
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number that allows one to classify the trajectories on T? depending on parameters.
In this case the rotation number can be represented as

27 o J -1
pL.E = 2nd / (Y)di

) V/(T1 + cos ) (Tg + cos )

If pr i takes a rational value, then all trajectories on the corresponding invariant

torus T? with given values of L and E are periodic. If p;, g takes an irrational

value, then the trajectories on the torus T? are quasi-periodic. The curves on the

plane L, E which correspond to the rational values of the rotation number equal
12

to %, 5, 5 are shown in Fig. 1.
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