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Abstract. We investigate the dynamics of particles in a Kerr metric which
describes the gravitational �eld in a neighborhood of a rotating black hole.
After elimination of cyclic coordinates this problem reduces to investigating
a Hamiltonian system with 2 degrees of freedom. This system possesses an
additional Carter integral quadratic in momenta and hence is integrable by
the Liouville �Arnold theorem. A bifurcation diagram is constructed and a
classi�cation of the types of trajectories of the system is carried out according
to the values of �rst integrals.

Introduction

Integrability of the geodesic �ow in a Kerr metric was established by Carter [4]
in 1968, and a large number of results have been obtained since then in this
problem, see, e.g., the reviews [7]. However, a complete bifurcation diagram has
been constructed recently in [2]. Using this diagram, an analysis of bifurcations of
di�erent types of the system's trajectories has been carried out for the case where
its parameter values are varied. In addition, a graphical representation of possible
types of motion depending on the values of the �rst integrals has been obtained.
In what follows, our analysis of the trajectories of a material point will be based
on [2].

At the same time, there are a number of particular results in this direction.
For example, bifurcation curves for plane orbits have been obtained for the critical
value of the Carter integral Q = 0 in [1] (in particular, rISCO (Innermost Stable
Circular Orbit) was found for the Kerr metric), and a corresponding diagram was
constructed in [8].

There are many other papers describing various special properties of (time-
like) geodesics of the Kerr metric. We mention some of them which are related to
our analysis. For example, in [3] the motion of particles falling from the state of
rest was examined, and the author of [5] found numerically trajectories making a
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large number of turns in the neighborhood of a black hole and then receding from
it (see also [6], where such orbits are called �zoom-whirl� orbits).

1. The Kerr metric

In the Boyer � Lindquist coordinates x = (t, r, θ, φ) the Kerr metric is represented
in the following form:

ds2 =
∆(r)

ρ2
(
dt− a sin2 θdφ

)2 − sin2 θ

ρ2
(
(r2 + a2)dφ− adt

)2 − ρ2
(
dr2

∆(r)
+ dθ2

)
,

ρ2 = r2 + a2 cos2 θ, ∆(r) = r2 − 2r + a2,

(1)
where α, β = 0, 1, 2, 3, summation is implied over repeated indices, and the signa-
ture (1, 3) has been chosen.

The dimensionless parameter a is expressed in terms of the angular momen-
tum of the celestial body Mz relative to the symmetry axis as follows:

a =
cMz

Gm2
.

If a = 0 (i.e., if there is no rotation), the metric (1) becomes a Schwarzschild
metric.

As a result, we obtain equations of motion for r and θ in the following form:(
dr

dτ

)2

=
1

ρ4
R(r),

(
dθ

dτ

)2

=
1

ρ4
Θ(θ),

R(r) =
(
E(r2 + a2)− aL

)2 − (Q+ (L− aE)2 + r2)∆(r),

Θ(θ) = Q− cos2 θ

(
a2(1− E2) +

L2

sin2 θ

)
.

(2)

From a physical point of view, E is the energy of the material point, and L is the
projection of its angular momentum onto the symmetry axis of the metric, Q is
constant Carter integral.

As can be seen, in order to integrate these equations in explicit form, one
needs to rescale time as dτ = ρ2(r, θ)du.

From the known solutions r(τ) and θ(τ) the evolution of the other variables
is de�ned using the quadratures

ρ2
dφ

dτ
=

a

∆(r)

(
E(r2 + a2)− aL

)
− aE +

L

sin2 θ
,

ρ2
dt

dτ
=
r2 + a2

∆(r)

(
E(r2 + a2)− aL

)
+ aL− a2E sin2 θ.

(3)
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Figure 1. Curves for the �xed a = 0.95 on the plane L,E which
correspond to the rational values of the rotation number ρφ/r, and
the trajectories in the equatorial plane for the �xed E = 0.95 and
di�erent L.

2. Trajectories in the equatorial plane

Let the value of the Carter integral be zero,Q = 0. Then it follows from the analysis
of of the latitudinal motion that there exist trajectories lying in the equatorial
plane θ = π

2 , and that all of them are critical (since in this case the latitudinal
potential has a critical point).

The system of equations, which governs the evolution of the angles ψ and
φ, de�nes a vector �eld on the torus T2 without �xed points. It is the rotation
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number that allows one to classify the trajectories on T2 depending on parameters.
In this case the rotation number can be represented as

ρL,E = 2πd

 2π∫
0

Φ(ψ)dψ√
(Γ1 + cosψ)(Γ2 + cosψ)

−1

.

If ρL,E takes a rational value, then all trajectories on the corresponding invariant
torus T2 with given values of L and E are periodic. If ρL,E takes an irrational
value, then the trajectories on the torus T2 are quasi-periodic. The curves on the
plane L,E which correspond to the rational values of the rotation number equal
to 1

3 ,
1
2 ,

2
3 are shown in Fig. 1.
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