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Setup

Consider a Hamiltonian system with Hamiltonian

H(q, p) =
1

2
∥p∥2 + V (q).

The configuration space is M \∆, where M is an oriented surface.
The potential energy has singularities ∆ = {a1, . . . , an}. Near aj ,

V (q) = −
fj(q)

d(q, aj)αj
+ Uj(q), fj(aj) > 0, αj > 0.

The symplectic form dp ∧ dq + Γ may be twisted by a 2-form Γ of
gyroscopic (magnetic) forces.
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Plane n-center problem

H(q, p) =
1

2
|p|2 + V (q), V (q) = −

n∑
j=1

mj

|q − aj |αj
+ U(q).

αj = 1 and U = 0 – integrable 2 center problem.

αj = 1 (Newtonian singularities) and n ≥ 3 – chaotic invariant
set on energy levels H = h > supV (B 1984, Knauf 1987).

αj > 2 (strong singularities) and n ≥ 2 – chaotic invariant set
for h > supV .

Goal: similar conditions for any αj .
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Classification of singularities

0 < αj < 1 – weak.

1 < αj < 2 – moderate.

αj = 1 – Newtonian.

αj = 2 – Jacobian.

αj > 2 – strong.

∆ = ∆weak ∪∆newt ∪∆mod ∪∆jac ∪∆strong .

Newtonian and Jacobi singularities are critical.
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Newtonian singularities

Let χ(M) be the Euler characteristics of M. For Newtonian
singularities (αj = 1) we have:

Theorem (B 1984)

If n > 2χ(M), the system is non-integrable on energy levels
H = h > supV .

Proof: Global Levi-Civita regularization replaces M by a surface M̂
with χ(M̂) < 0.
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Birkhoff integrals

Polynomial in p and differentiable in q first integrals on an energy
level are called Birkhoff conditional integrals. Let

S(∆) =
∑

αj , 1 ≤ αj < 2.

For Newtonian singularities S(∆) = n.

Theorem (B-Kozlov 2017)

Let M be a closed manifold and h > maxV .

If S(∆) > 2χ(M), there are no nonconstant Birkhoff
conditional integrals on {H = h}.
If S(∆) = 2χ(M), such integrals may exist only when the
gyroscopic form is exact: Γ = dω.

For chaotic behavior stronger conditions are needed.
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Conditions for positive topological entropy

Ak = 2− 2k−1, A2 = 1, A3 = 4/3, . . . A∞ = 2

nk = #{aj : Ak ≤ αj < Ak+1}, n∞ = #{aj : αj ≥ 2}

A(∆) =
∑

2≤k≤∞
nkAk = n2 +

4

3
n3 +

3

2
n4 + · · ·+ 2n∞

Singularities ∆reg = {aj : αj = Ak} are regularizable (Knauf 1987).
A(∆) ≤ S(∆) and S(∆) = A(∆) iff ∆ = ∆reg .

If all singularities are weak, A(∆) = 0.

If all singularities are Newtonian, A(∆) = n.

If all singularities are strong, A(∆) = 2n.

Theorem (B-Kozlov 2017)

Let M be a closed manifold, there are no gyroscopic forces, and
A(∆) > 2χ(M). Then for h > maxV there is a compact invariant
set with positive topological entropy on {H = h}.
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Examples

M = T2, χ(T2) = 0. The theorem works if there is a nonweak
singularity. We do not know if the existence of a weak
singularity on T2 always implies chaotic behavior.

M = S2, χ(S2) = 2. The theorem works for:

n ≥ 5 singularities with αj ≥ 1,
n ≥ 4 singularities with αj ≥ 4/3,
n ≥ 3 singularities with αj ≥ 3/2.
3 singularities with αj ≥ 1 and the 4th with α4 ≥ 4/3.

For n = 4 Newtonian singularities on S2 the system may be
integrable on an energy level H = h > maxV .
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Noncompact M

Take a compact domain D ⊂ M containing ∆. The gyroscopic
form is exact on D:

Γ = dω, ω = ⟨w(q), dq⟩.

Trajectories on {H = h} are geodesics of the Jacobi metric

gh(q, q̇) =
√
2(h − V (q))∥q̇∥+ ⟨w(q), dq⟩.

gh is positive definite in D if

h > max
q∈D

(V (q) + ∥w(q)∥2/2).

The domain D is geodesically convex with respect to gh if

⟨∇V , ν⟩+ 2κ(h − V )− ∥Γ∥
√
2(h − V ) ≥ 0 on ∂D.

ν – the inner unit normal to ∂D; κ – the geodesic curvature.
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Main theorem

Theorem

Let D ⊂ M be a compact domain containing ∆. Suppose D is
geodesically convex for energy h. If A(∆) > 2χ(D), there is a
compact invariant set with positive topological entropy on
{H = h} ∩ T ∗(D \∆).
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Application to the generalized n center problem

Theorem

If A(∆) > 2, the generalized n-center problem in R2 has a
compact chaotic invariant set on any energy level H = h > supV .

A weaker result was proved in (Castelli 2017).

Proof: there exists a convex for energy h compact set D ⊂ R2

containing all nonweak singularities.

If αj ≥ 1, the theorem works for n ≥ 3.

Works for n = 2 if α1 ≥ 1 and α2 ≥ 4/3.

Works for the plane restricted circular n + 1 body problem
with n ≥ 3.
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Convexity properties

Lemma

For 0 < αj < 2 and small ε > 0 the ball

Bj = B(aj , ε) = {q : d(x , aj) ≤ ε}, aj ∈ ∆.

is geodesically convex in the Jacobi metric. For αj > 2, the
complement of Bj is geodesically convex.

Known to the founders of celestial mechanics. We can remove
strong singularities replacing D by a geodesically convex
D ′ = D \ ∪αj>2Bj .
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Jacobi metric

Trajectories with energy h are extremals of the Jacobi length

J(γ) =

∫
gh(γ(t), γ̇(t)) dt.

Distance function

ρ(x , y) = inf{J(γ) : γ ∈ C 1([0, 1],D \∆), γ(0) = x , γ(1) = y}.

Lemma

Any points x , y ∈ D can be joined by a minimizer such that
J(γ) = ρ(x , y). The minimizer is a chain γ = γ1 · · · γk of
trajectories joining pairs of points in ∆.

In order to get noncollision trajectories we need to show that the
minimizers do not pass through ∆.
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Cone property

The next result is the crucial step in the proof. Suppose all
singularities are weak or moderate: 0 < αj < 2.

Lemma

For small ε > 0 there exists δ ∈ (0, ε) such that for any
x , y ∈ ∂B(aj , ε), the minimizer joining x , y does not enter B(aj , δ).

Corollary

Let π : D̃ → D be the universal covering and ∆̃ = π−1(∆). A
minimizer joining any points x , y ∈ D̃ \ ∆̃ does not pass though ∆̃.
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Weak main theorem

Proposition

If all singularities are weak and χ(D) < 0, the geodesic flow of the
Jacobi metric on D \∆ has a compact chaotic invariant set.

Proof. Modify the Jacobi metric gh in every ball Bj = B(aj , δ)
replacing it by a smooth Riemannian metric g̃ on D such that
g̃ = gh on D \ ∪Bj and g̃ ≥ gh in ∪Bj . Since χ(D) < 0, there is a
compact chaotic invariant set of minimizing geodesics of the
metric g̃ (Morse, Dinaburg, Kozlov). By the cone property, such
geodesics can not pass through Bj , so they are geodesics of the
Jacobi metric.

The main theorem follows from the proposition via regularization:
we make singularities weak while complicating topology.
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Generalized Levi-Civita regularization

Choose local conformal coordinate z ∈ C so that aj = {z = 0}.

V (z) = − f (z)

|z |α
+ U(z), α = αj , f (0) > 0.

The transformation z = wβ replaces the Jacobi metric gh by g̃ :

gh = 2
√
g(z)(f (z)|z |−α + h − U(z))|ż |

g̃ = 2β
√
g(wβ)(f (wβ)|w |−α̃ + (h − U(wβ))|w |2(β−1))|ẇ |.

Singularity of order α is replaced by a singularity of order

α̃ = αβ − 2(β − 1).
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If α = Ak = 2− 2/k , and β = k ∈ N, the transformation
ϕk(w) = wk regularizes the singularity (Knauf 1987):

α̃ = 2− k(2− α) = 0.

The classical Levi-Civita transformation for k = 2.

Lemma

If Ak < αj < Ak+1, the transformation ϕk replaces the singularity
aj by a weak singularity of order α̃j = 2− k(2− αj).

For Jacobi singularities α̃j = αj = 2: regularization fails.
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Global regularization

Theorem

There exists a surface X with boundary, a K -sheet smooth
covering ϕ : X → D \ (∆jac ∪∆strong ) branched over the set
∆newt ∪∆mod , and a smooth Riemannian metric on X such that:

Projections to D of minimal geodesics on the universal
covering of X are trajectories with energy H = h having no
collisions with ∆, except maybe with regularizable singularities
∆reg .

The Euler characteristics

χ(X ) = K
(
χ(D)− 1

2
A(∆)

)
< 0.
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Proof

For simplicity let D ⊂ R2 ∼= C and ∆strong = ∆jac = ∅.

∆ = ∆mod ∪∆newt = ∪m
i=1∆ki , ∆ki = {aj : Ak ≤ αj < Ak+1}.

X = {(z ,w1, . . . ,wm) ∈ D × Cm : wki
i =

∏
aj∈∆ki

(z − aj)}

is a smooth complex curve. The projection

π : X → D, π(z ,w1, . . . ,wm) = z ,

is a covering with the number of sheets

#π−1(z) =
m∏
i=1

ki = K , z ∈ D \∆.
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The covering π : X → D is branched over ∆:

#π−1(aj) =
K

ki
, aj ∈ ∆ki .

Near q ∈ π−1(∆ki ), π is the generalized Levi-Civita transformation
of order ν(q) = ki .
By the Riemann–Hurwitz formula,

χ(X ) = Kχ(D)−
m∑
i=1

∑
q∈π−1(∆ki

)

(ν(q)− 1)

= Kχ(D)−
m∑
i=1

nki
K

ki
(ki − 1), nki = #∆ki ,

= Kχ(D)− K

2

m∑
i=1

nkiAki = K (χ(D)− 1

2
A(∆)) < 0.
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End of the proof

π : X \ π−1(∆) → D \∆ is a nonbranched covering. Lift the
Jacobi metric gh on D \∆ to a metric on X \ π−1(∆).
The singularity aj disappears if αj = Aki and becomes weak if
Aki < αj < Aki+1

.
Since χ(X ) < 0, by the weak main theorem, the geodesic flow on
X has a compact chaotic invariant set.
When D is a plane domain and there are no Jacobi singularities,
the proof is finished.
For Jacobi singularities a different argument is needed.
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Spatial n-center problem

Our results can be partly extended to the spatial n-center problem.
For n ≥ 3 Newtonian singularities in R3 the existence of a chaotic
invariant set was proved using global KS regularization (B-Negrini
2000).
The regularization replaces the configuration space M = R3 by the
4-dimensional manifold M̂n:

M̂n = (S2 × R2)# (S2 × S2)# . . .#(S2 × S2)︸ ︷︷ ︸
k−2

, n = 2k

M̂n = R4#(S2 × S2)# . . .#(S2 × S2)︸ ︷︷ ︸
k−1

, n = 2k + 1.

For n ≥ 3 this is a rationally hyperbolic 4-manifold. Then a
modification of Gromov’s theorem can be used to prove positive
topological entropy.
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Generalized spatial n-center problem

Proposition

If there are n ≥ 3 singularities with αj > 1, global KS regularization

gives a system on M̂n with weaker singularities 0 < α̃j < αj .

Then we hope that a modification of Gromov’s theorem can be
applied to obtain a chaotic invariant set. The problem is that,
contrary to the 2-dimensional case, we can’t exclude that
non-minimizing chaotic trajectories enter weak singularities.

Conjecture

Let Bk = 2− 2k−1, mk = #{ak : Bk ≤ αj < Bk+1}. If

B(∆) =
∑

1≤k≤∞
mkBk > 2,

then the generalized n center problem in R3 has positive
topological entropy on energy levels H = h > supV .
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Thank you for your attention!
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