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Abstract. The motion of an axisymmetric rigid body with a �xed point under
the action of a periodic torque is considered. Two small parameters are in-
troduced: the �rst characterizes the smallness of the amplitude of the torque,
and the second characterizes the smallness of the component of the kinetic
moment perpendicular to the axis of symmetry. The smallness of the second
small parameter is usually the basis for using the approximate theory of the
gyroscope. Using this approximation, one can quite simply �nd the precession
velocity of the top under the action of a small periodic torque. It is shown
that the relative accuracy of the velocity calculated in this way is practically
independent of the second small parameter, which does not exceed a value of
the order of unity. In this way, a simple formula is found for the precession of
the Earth's satellite under the action of the Earth's gravitational �eld. The
resulting simple formula for the velocity of the Lunar-Solar precession of the
Earth agrees well with astronomical observations.

Introduction

The motion of an axisymmetric rigid body is described by an equation for a unit
vector e lying on the axis of symmetry [1]. The exact equation includes the second
derivatives of the vector e with respect to time. In the case of rapid rotation, the
approximate theory of a gyroscope proposes to ignore them. Then there remains
a �rst-order equation with respect to the vector e, which is called the equation of
the precession theory of a gyroscope. From this equation, the precession velocity
under the action of a periodic torque is easily found by the averaging method [2].
It is shown that the relative accuracy of the precession velocity is proportional to
the amplitude of the torque and does not signi�cantly depend on the component
of the kinetic moment perpendicular to the axis of the top.
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Figure 1. Angles of precession and nutation. Lunisolar precession.

1. Exact equations

The motion of an axisymmetric body with a �xed point lying on the axis of
symmetry is conveniently described using a unit vector e = e3 lying on the axis
of symmetry. In this case, information about the rotation of the body about the
axis of symmetry will not interest us. The equation for the vector can be obtained
from the law of change of the kinetic moment [1]

dK

dt
= Mom, K = Ae× de

dt
+ Cre

dK

dt
= Ae× d2e

dt2
+ Cr

de

dt
+ Ce

dr

dt
= Mom

(1)

where K is the kinetic moment, Mom is the moment of force applied to a point
on the axis of symmetry, e is a unit vector directed along the axis of symmetry,
A, C are the moments of inertia of a rigid body, r is the projection of the angular
velocity onto the axis of symmetry. It is assumed that the vectorMom is a periodic
function of the argument τ = ωt , ω is the frequency.

Let us introduce two dimensionless parameters ε = max|Mom|
Crω , ε1 = Aω

Cr
and assume that the projection of the moment of forces Mom on the axis e = 0.

Then the system will be reduced to the following dimensionless form for
angles of precession α and nutation θ (�g.1)

−ε1

(
α̈ sin θ + 2θ̇α̇ cos θ

)
+ θ̇ = εM1(θ, α, τ),

ε1

(
θ̈ − α̇2 sin θ cos θ

)
+ α̇ sin θ = εM2(θ, α, τ), τ = ωt

(2)

Here the dots denote the derivatives with respect to τ . The parameter ε1 deter-
mines the ratio of the �rst terms on the left-hand side of the equations to the
second. For ε1 << 1, the approximate theory of the gyroscope is usually used, in
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which the �rst terms are discarded [1]

dθ

dτ
= εM1(θ, α, τ),

dα

dτ
sin θ = εM2(θ, α, τ) (3)

For the components of the moment with a small parameter ε, the (3) system can
be easily studied by the averaging method.

It seems obvious that the relative error of the approximate theory of the
gyroscope (3) is proportional to the parameter ε1. However, this is not so. It is
shown that the relative error of the nutation and precession angles determined by
the approximate theory of the gyroscope (3) is proportional to the parameter ε for
almost all values of the parameter ε1 limited by a number of the order of unity. The
importance of this statement follows from the fact that there are many problems
in mechanics in which the parameter ε1 signi�cantly exceeds the parameter ε in
magnitude.

2. Formulation of the theorem and examples of its application

Theorem For the complete system of equations (2) with 2π periodic in τ compo-
nents of the moment of force Mi with small parameters ε and ε1, the precession
angle is determined from the system of equations (3) with a relative error of the
order of ε and for almost any small values of ε1 is approximated by the averaged
system (3).

Example 1. Precession of a body in the two-body problem. Consider the
circular two-body problem, in which the �rst body is a rigid body of mass m, and
the second has mass M . The bodies are attracted by the law F = −γMm r

|r| .

A body of mass m moves under the action of force F along a circle of radius
R1, the center of which is located at the center of mass of the bodies. Due to the
inhomogeneity of the �eld, a moment of force acts on a solid body of mass relative
to its center of mass

Mom(ωt) =
3γMm

R3
(A− C)M̃, M̃ = ((r0/R) · e)((r0/R)× e) (4)

where r0 is the radius vector from the center of the body of mass m to the center
of the body M , A and B are the moments of inertia of the body relative to the
axis of symmetry and the axis perpendicular to it R = |r0|.

The bodies move in circular orbits relative to the center of mass and the
distance between the bodies remains constant. The circular orbit is in the plane
of vectors i, j.

According to the theorem, it is su�cient to solve the simpli�ed system of
equations

dθ

dτ
= εM1(θ, α, τ), Cr

dα

dτ
sin θ = εM2(θ, α, τ),

dr

dτ
= 0

M1 = sin θ cos(τ − α) sin(τ − α), M2 = − sin θ cos θ cos2(τ − α).
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By averaging the right-hand sides, we obtain

α̇ = −1

2
ε cos θ, θ̇ = 0, ε =

3γM

R3rω
δ == 3

ω

r

(
1 +

m

M

)−1

From here we obtain the formula for the angular velocity of precession

dα

rdt
= −3

2

(ω
r

)2

δ cos θ
(
1 +

m

M

)−1

Example 2. Lunisolar precession (�g 1). It consists of the angular velocities
of the solar and lunar precessions

dα1

dt
=

3

2

ω2
1

r
δ cos θ1,

dα2

dt
=

3

2

ω2
2

r
δ cos θ2 (1 +m/M)

−1

The angle of inclination of the plane of the Earth's equator to the plane
of the Earth's rotation around the Sun varies periodically between the values
22.5◦ < θ < 24.5◦ [4, 5]. The angle of inclination of the plane of the Moon's
rotation around the Earth to the plane of the Earth's rotation around the Sun
varies within the range of 5◦ < ϕ < 5.28◦.

Following Beletsky, we accept the following average values

θ1 = θ2 = 23.5◦, ϕ = 0◦, ω1 = (360/N1) ◦ /day, ω2 = (360/N2) ◦ /day,
r = 360◦/day, N1 = 365day, N2 = 28day, δ = 0.0033

The ratio of the masses of the Earth and the Moon is m/M = 81, and the ratio of
the masses of the Earth and the Sun is neglected. Substituting these data for the
velocity and period of precession, we get

dα

dt
==

3

2
δ cos θ

(
ω2
1

r
+

ω2
2

r
(1 +m/M)

−1

)
◦

day
, P =

360

N1dα/dt
= 26171year

Modern observations give a close value of P = 25772year.
Remark. After averaging the force function over the precession angle, and

then over the true anomaly for the precession period, Beletski obtained a formula
for the precession period that was similar in structure ([3] p. 209), but it was
apparently given with typos.
The work was carried out on the topic of state assignment No. 124012500443-0.
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