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Abstract. The method of invariant normalization proposed by V.F. Zhuravlev,
which is used for autonomous Hamiltonians for normal or symmetrized forms,
is discussed. Normalizing canonical transformation is represented by a Lie se-
ries using a generating Hamiltonian. This method has a generalization pro-
posed by A.G. Petrov, which normalize not only autonomous but also non-
autonomous Hamiltonians. Normalizing canonical transformation is repre-
sented by a series using a parametric function. For autonomous Hamiltonian
systems, the first two steps of approximations of both methods coincide, while
the remaining steps differ. The normal forms in both methods coincide.

A method for testing normalization software is proposed. For this pur-
pose the Hamiltonian of a strongly nonlinear Hamiltonian system is found for
which the normal form is a quadratic Hamiltonian. The normalizing transfor-
mation is expressed in elementary functions.

1. Algorithm of invariant normalization

Normalization using Lie series is implemented as follows (see [1, 2, 3]). Let
H(q,p) = H0(q,p) + F be the initial Hamiltonian, H0 the principal term and
F the perturbation. Its normal form (NF) h(Q,P) and the generator of the Lie
substitution G(Q,P) are searched in the form of series

H(q,p) = H0(q,p) + F, h(Q,P) = H0(Q,P) + f,

%[2ex].F =
∞∑
k=1

εkFk(q,p), f =
∞∑
k=1

εkfk(Q,P), G =
∞∑
k=1

εkGk(Q,P).
(1)

Then for the NF h = H0 + f we get the Lie series

f =H0 ∗G+M,

M =F + F ∗G+
1

2!
(H0 + F ) ∗G2 +

1

3!
(H0 + F ) ∗G3 + · · · ,

(2)

where ∗ denotes the Poisson bracket and the expression Q ∗Gn – n- times Poisson
bracket: Q ∗Gn = Q ∗Gn−1 ∗G.
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Hence for the coefficients of the series (1) on powers ε of the NF fk and the
generator Gk we obtain a chain of homological equations:

H0 ∗ fk = 0, fk = H0 ∗Gk +Mk, k = 1, 2, . . . , (3)

where the term Mk depends on the values of Hj , hj , Fj , fj , Gj , j < k obtained
in the previous steps. The structure of Mk for an arbitrary value of k is described
in [4]. The solution of the equations (3) in Zhuravlev’s method is found using
quadrature

.

t∫
0

mk(Q,P) dt = tfk(Q,P) +Gk(Q,P) + g(t), (4)

where the expression mj(t,Q,P) is obtained from Mk by substituting solutions
of the unperturbed system with Hamiltonian H0(q,p). In the case of semi-simple
eigenvalues λk of the unperturbed system, the integration of the quadrature (4)
is replaced by substitution followed by simplification of exponents of the form
exp(λkt).

The canonical transformation through the Lie generator is represented by Lie
series

q = Q+Q∗G(Q,P)+
1

2!
Q∗G2+ · · · , p = P+P∗G(Q,P)+

1

2!
P∗G2+ · · · . (5)

2. Normalization Algorithm with Parametric Function
An alternative way of canonical transformation via the parametric function Ψ(x,y) [5,
3] has the form 

q =x− 1

2
Ψy,

p =y +
1

2
Ψx,


Q =x+

1

2
Ψy,

P =y − 1

2
Ψx.

Eliminating the parameters x and y, we can represent this transformation in the
form of series

q = Q+Q ∗Ψ(Q,P) +
1

2!
Q ∗Ψ2 + · · · , p = P+P ∗Ψ(Q,P) +

1

2!
P ∗Ψ2 + · · · ,

which have three terms the same as (5) precisely by substituting G → Ψ. The
subsequent expansion coefficients at powers of Ψ3 and higher will be different.

Instead of the equation (2), we get the following equation:

f =H0 ∗Ψ+M,

M =F

(
x− 1

2
Ψy,y +

1

2
Ψx

)
− f

(
x+

1

2
Ψy,y − 1

2
Ψx

)
+ f(x,y).

Whence we obtain an analogous chain of homological equations. Moreover, for the
first two approximations the equations differ only by replacing the coefficients G1,
G2 by Ψ1, Ψ2.
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The algorithm is similar to the Zhuravlev invariant normalization algorithm.
Zhuravlev quadrature (4) is replaced by

t∫
t0

mk(ξ, t0,Q,P)dξ = (t− t0)fk(t0,Q,P) + Ψk(t0,Q,P) + g(t). (6)

In this quadrature, the main property of the NF is preserved: the perturbed part
of the Hamiltonian system with Hamiltonian f(t,Q,P) is the integral of the un-
perturbed part with Hamiltonian H0(t,Q,P). This allows us to find an analytical
solution of the problem using the theorem for such a system: the general solution
of the Hamiltonian equations with Hamiltonian h = H0 + f is obtained by sub-
stituting into the unperturbed solution the solution of the system with perturbed
Hamiltonian f(0,q,p). This algorithm can be applied to non-autonomous systems.

Example The Mathieu equation ẍ+ x(1 + 3δ cos 2t) = 0 can be written in Hamil-
tonian form with Hamiltonian

H = H0 + F, H0 =
1

2

(
x2 + u2

)
, F = δ

3

2
x2 cos 2t

Without using the theory of the Mathieu equation, we construct by normalization
the asymptotic solution of the first approximation at δ ≪ 1.

1. Find the solution to the unperturbed system.

x = X cos(t− t0) + U sin(t− t0), u = −X sin(t− t0) + U cos(t− t0) (7)

2. We define the function m(t, t0, Q, P ) by substituting the solution (7) into the
perturbed part of the Hamiltonian

m(t, t0, X, U) = δ
3

2
(X cos(t− t0) + U sin(t− t0))

2 cos 2t

3. Compute the integral within (t0, t) of the function m(t′, t0, X, U). In this in-
tegral, we need to isolate the linear in time f(t0, X, U), the time-independent
summand Ψ(t0, X, U), and the periodic in time g(t), with period average
equal to zero. From the integral (6) we find the functions f , Ψ, φ:

f =− 3δ
(
cos(2t0)

(
U2 −X2

)
+ 2XU sin(2t0)

)
/8,

Ψ =− 3δ
(
sin(2t0)

(
5X2 + 3U2

)
− 2XU cos(2t0)

)
/32,

g(t) =− 3δ

32

((
U2 −X2

)
sin(4t− 2t0) + 2XU cos(4t− 2t0)− 4

(
X2 + U2

)
sin 2t

)
.

The first function is a perturbation of the NF, the second term defines a substitu-
tion of the variables

x =X −ΨU (t,X,U) = X + 3δ(3U sin 2t−X cos 2t)/16,

u =U +ΨX(t,X,U) = 3δ(−5X sin 2t+ U cos 2t)/16,

which symmetrizes the Hamiltonian to small orders of δ2.

h = H0 + f, H0 =
1

2

(
X2 + U2

)
, f =

3δ

8

((
X2 − U2

)
cos 2t− 2XU sin 2t

)
.
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It is easy to see that the perturbed part of f is an integral of the unperturbed
part of H0. The general solution of the Hamilton equations with Hamiltonian h is
obtained by substituting into the unperturbed solution

X = q cos t+ p sin t, U = −q sin t+ p cos t

solutions with perturbed Hamiltonian f(0, q, p) = 3δ
(
−p2 + q2

)
/8

q = A cosh τ +B sinh τ, p = A sinh τ −B cosh τ, τ =
3

4
δt,

Here is an example of constructing the asymptotic solution of the Mathieu
equation with initial conditions x(0) = 1, ẋ(0) = 0

X =A (cosh τ cos t− sinh τ sin t) , U = −A (cosh τ sin t− sinh τ cos t) ,

x =X +
3δ

16
(3U sin 2t−X cos 2t),

where A = (1− (3/16)δ)
−1, B = 0.
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(b) δ = 0.2.

Figure 1. Comparison of numerical and asymptotic solutions of
the Mathieu equation.

In Fig. 1, the numerical solution of the Mathieu equation (solid line) is com-
pared with the asymptotic solution (dashed line): (a) δ = 0.1 and (b) δ = 0.2.
As can be seen, at δ = 0.1 the asymptotic solution begins to differ slightly from
the exact solution in the neighborhood of the maximum, when the function x(t)
reaches values of the order of 109. For larger values of δ = 0.2 the difference
becomes significant, when the function x(t) reaches values of the order of 104.

3. Testing algorithms using tautochronous oscillations
To validate various normalization methods, it is useful to test them on nonlinear
systems possessing tautochronous oscillations. For such systems, the NF in the
neighborhood of the equilibrium position has the form of the Hamiltonian of a



On Algorithms of Hamiltonian Normal Form 5

harmonic oscillator. Applying the invariant normalization method up to some fixed
order all terms fk of the NF should be zero.

An example of a tautochronous system is a system with Hamiltonian is given
in [6]:

H =
1

2

(
p2 + (1 + q)2 +

1

(1 + q)2
− 2

)
. (8)

It can be shown that substituting the variables

q(Q,P ) =
√

R(Q,P )/2− 1, p(Q,P ) =
dq

dt
= P

√
P 2 + 4Q2 + 4

2R(Q,P )
, (9)

where R(Q,P ) = P 2+4Q2+2+2Q
√
P 2 + 4Q2 + 4, has the following properties:

1. Differential form PdQ− pdq is complete.
2. Substitution into the original Hamiltonian (8) converts it to the NF h(Q,P ) =

(Q2 + 4P 2)/2.
3. Substitution the solution of the NF equations Q = Q0 cos 2t, P = −2Q0 sin 2t

into (9) gives the exact solution of the original Hamiltonian system.
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