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Abstract. We consider conditions of three types of stability: Lyapunov, for-
mal and weak of a stationary solution in a Hamiltonian system with a finite
number of degrees of freedom. The conditions contain restrictions on the order
of resonances and some inequalities for coefficients of the normal forms of the
Hamiltonian functions. We also estimate the orders of solutions’ divergence
from the stationary ones under lack of formal stability.

1. Resonant normal form
Consider a Hamiltonian system

ξ̇j =
∂γ

∂ηj
, η̇j = − ∂γ

∂ξj
, j = 1, . . . , n (1)

with n degrees of freedom in the neighborhood of a stationary point at the origin

ζ
def
=(ξ,η) = 0. (2)

If the Hamilton function γ(ζ) is analytic at this point, then it expands into
a convergent power series

γ(ζ) =
∑

γpqξ
pηq, (3)

where p,q ∈ Zn, p,q ⩾ 0, ξp = ξp1

1 · · · , ξpn
n , γpq are constant coefficients. Since

the point (2) is stationary, the expansion (3) starts with quadratic terms. They
correspond to the linear part of the system (1). The eigenvalues of its matrix are
divided into pairs λj+n = −λj , j = 1, . . . , n. Denote by vector λ = (λ1, . . . , λn) the
set of basic eigenvalues. As known, canonical coordinate substitutions ξ,η → x,y
preserve the Hamiltonian nature of the system.

Theorem 1 ([1, §12]). There is a canonical formal transformation ξ,η ↔ x,y that
reduces the Hamiltonian (3) to the normal form

g(x,y) =
∑

gpqx
pyq, (4)
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where the series g contains only resonant terms satisfying resonant equation
⟨p− q,λ⟩ = 0. Here ⟨·, ·⟩ means the scalar product.

Condition An
k for system with n DOF takes place if the resonant equation has no

integer solutions p ∈ Zn with ∥p∥ ⩽ k.
This condition means that there are no resonances up to and including the

order k. If it is satisfied, then in the normal form (4) is g =
∑[k/2]

l=1 gl(ρ)+ g̃(k)(z, z̄),
where gl(ρ) are homogeneous polynomials from ρj = izj z̄j , j = 1, . . . , n, of degree
l, and g̃(k) is a series from z, z̄ starting with powers above k. In particular, under
the condition An

2 we have

g = ⟨ρ,λ⟩+ g̃(3)(z, z̄),

and under the condition An
4 we have

g = ⟨ρ,λ⟩+ ⟨Cρ,ρ⟩+ g̃(5)(z, z̄), (5)

where C is n× n matrix.

2. Lyapunov and formal stabilities of stationary point

2.1. Lyapunov stability
Definition 1. A stationary point (SP) ζ = 0 of a real Hamiltonian system (1) is
stable by Lyapunov if for every ε > 0 in “cube” ∥ζ∥ < ε there exists a closed
integral (2n − 1)-dimensional manifold L surrounding the point ζ = 0 from all
sides, where ∥ζ∥ =

∑2n
j=1 |ζj |.

Lemma 1. A SP ζ = 0 is Lyapunov stable if there exists a sign-definite real integral

f(ζ) = fl(ζ) + f̃ (l)(ζ) (6)

of the system (1), where fl(ζ) is a homogeneous form of degree l. In other words,

{f, γ} = 0, (7)

where {·, ·} is the Poisson bracket, and fl(ζ) does not equal to zero at any ζ except
the point ζ = 0.

Stability is possible only if Reλ = 0.

Theorem 2 (Dirichlet). Suppose λj = iαj, αj ∈ R, j = 1, . . . , n. If the condition
An

2 is satisfied and the numbers α1, . . . , αn are of the same sign, then the SP ζ = 0
is stable according to Lyapunov.

Here the role of the integral f is played by the Hamiltonian γ itself.
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2.2. Formal stability
By formal we will mean power series, about the convergence of which nothing is
known.

Definition 2 ([2]). A SP (2) of a real Hamiltonian system (1) is formally stable if
there exists a formal real sign-defined integral (6) of the system (1), i.e., the formal
identity (7) is satisfied and the homogeneous form fl is null only at ζ = 0.

Formal stability means that the departure of solutions from the SP, if any-
thing, is very slow: slower than any finite degree of t.

Definition 3 ([3, Ch. 4, § 4]). A SP (2) of a real Hamiltonian system (1) is formally
stable if there exists a formal real integral

f(ζ) = fl(ζ) + fl+1(ζ) + . . .+ fm(ζ) + f̃ (m)(ζ)

of system (1), where fk(ζ) are homogeneous forms of degree k and the sum

f∗(ζ) = fl + fl+1 + . . .+ fm (8)

does not equal to zero in some neighborhood of the point ζ = 0 besides it.

Let K ⊂ Rn be a linear shell of integers q satisfying the equation ⟨α,q⟩ = 0,
and Q = {q ⩾ 0, q ̸= 0} ⊂ Rn is a non-negative orthant without origin.

Theorem 3 (Formal Stability Theorem [4]). If Condition An
4 is satisfied and in (5)

⟨Cq,q⟩ ≠ 0 for q ∈ K ∩Q, (9)

then the point ζ = 0 is formally stable in the sense of Definition 2

Here, the normal form of the Hamiltonian (4) from Theorem 1 is used to
construct the formal integral.

In the situation when any resonance of multiplicity 1 takes place, there exists
the only integral vector kp, k ∈ Z\{0}, p ∈ Zn, satisfying the resonant equation.
Let ωj , j = 1, . . . , n − 1, be the basis of the orthogonal complement to the one-
dimensional solution space, then ⟨ωj ,ρ⟩ is the first integral of the normalized
system with Hamiltonian g(z, z̄) [5, Ch. I, Sect. 3].

Lemma 2. If there exists only one resonant vector kp, k ∈ Z, which does not belong
to the positive orthant Q, than SP ζ = 0 is formally stable.

2.3. Method of formal stability investigation in a generic case with 3DOF
Consider a Hamiltonian system in the vicinity of the SP for which the following
conditions are satisfied:

• the number of degrees of freedom of the system is greater than two;
• the quadratic form γ2 in expansion (3) is nondegenerate and is not definite;
• the Hamiltonian function γ smoothly depends of the vector of parameters P

from a domain Π ⊂ Rm.
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Corollary 1 (of Formal Stability Theorem 3). If under the condition of Theorem 3
in R3 the intersection of the plane ⟨λ,q⟩ = 0 and the cone ⟨Cq,q⟩ either does not
belong to Q, or belongs to Q = R3

+, but does not contain the integral vector q, then
the SP is formally stable.

Definition 4. A resonant variety Rp
n in the space K of coefficients a1, . . . , an of the

semi-characteristic polynomial χn(µ) of degree n is an algebraic variety, on which
the vector of basis eigenvalues λ is a nontrivial solution to the resonant equation
⟨p,λ⟩ = 0 for a fixed integer vector p∗ ∈ Zn\{0}. An analytical representation of
the variety Rp∗

n in an implicit or parametric form is denoted by Rp∗

n .

To examine the formal stability of a SP of a Hamiltonian system (1), we
should [6]:

• find in the space of parameters Π the stability set Σ of the linear system;
• find such domains, in which the quadratic form γ2(z) is not sign definite;
• find parts Sk in these domains that do not contain strong resonances;
• normalize the Hamiltonian in each of these parts Sk up to order four, and
• apply Formal Stability Theorem 3.

To do this, it is sufficient to select a point in each Sk in the space of parameters
and use one of the normalization algorithms for the Hamiltonian function. Since all
eigenvalues λk (k = 1, . . . , n) are simple at each interior point of Sk, the invariant
normalization algorithm can be easily applied.

Remark. Most of presented above statements are applicable for stability of a pe-
riodic solution.

3. Scattering order of solution

Let the function f(t) be defined at real t → −∞. It is said to have order δ = δ(t)
if δ = inf ε such that f(t)/(−t)ε → 0 at t → −∞. If δ > 0, then f(t) is unbounded,
if δ < 0, then f(t) → 0 at t → −∞. In the latter case δ(f) < 0, the larger δ is, the
slower f(t) approaches zero.

Definition 5. Let the solution ζ(t) of the Hamiltonian system (1) tends to a SP (2)
at t → −∞. On this solution order of scattering ∆ = min {δ∥ζ∥}.

Definition 6. The scattering order ∆̃ of solutions of the system (1) from the SP (2)
is the lower bound of the scatter order ∆ over all solutions ζ(t) that tend to the
point (2) at t → −∞.

The smaller ∆̃ < 0, the faster the solutions are scattered from the SP. At
formal stability the order of scattering of solutions from the SP is zero. Let us
estimate the order of scattering ∆̃ in the absence of formal stability. The cases
−10−10 < ∆̃ < 0 can be considered as weak stable.
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Conjecture. Let the condition An
2 and κ = min ∥p + q∥ > 2 by integer solutions

p ⩾ 0, q ⩾ 0 of equation ⟨α,p− q⟩ = 0 be satisfied, then the order of scatter of
the system solutions (1) from the SP ∆̃ ⩾ (2− κ)−1.

4. Conclusion
These results were published in [7] together with:

1. more details, with examples;
2. number-theoretical approach simplifying the proofs of formal stability;
3. computing of formal stability in a complicated case;
4. similar theory for a neighborhood of a periodic solution.
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