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Abstract

We consider conditions of three types of stability: Lyapunov, formal and weak of a stationary
solution in a Hamiltonian system with a finite number of degrees of freedom. The conditions
contain restrictions on the order of resonances and some inequalities for coefficients of the normal
forms of the Hamiltonian functions. We also estimate the orders of solutions’ divergence from
the stationary ones under lack of formal stability.



Introduction (1)

Nowadays there are three types of definitions of stationary-point stability in a Hamiltonian
system:

∙ Lyapunov stability,
∙ formal stability by Moser and by Markeev,
∙ weak stability.

In the talk we present these definitions for a stationary point and give conditions on
the Hamiltonian function which guarantee them. Formal stability investigation method
in a generic case with 3DOF is considered. In the absence of formal stability one can
consider a weak stability in the situation when the order of scattering of solutions is small.
Therefore the order of scattering of the solution from a stationary point in the absence
of formal stability is estimated.
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Note on notation

Vectors are indicated in bold type. By default, these are vectors of dimension 𝑛 unless
otherwise specified, i.e. x = (𝑥1, . . . , 𝑥𝑛), p = (𝑝1, . . . , 𝑝𝑛), and xp = 𝑥𝑝11 · · ·𝑥𝑝𝑛𝑛 ;
the scalar product ⟨p,q⟩ = 𝑝1𝑞1 + · · ·+ 𝑝𝑛𝑞𝑛;
‖p‖ = |𝑝1|+ · · ·+ |𝑝𝑛|.
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1. Resonant normal form (1)

Consider a Hamiltonian system

𝜉𝑗 =
𝜕𝛾

𝜕𝜂𝑗
, �̇�𝑗 = − 𝜕𝛾

𝜕𝜉𝑗
, 𝑗 = 1, . . . , 𝑛 (1)

with 𝑛 degrees of freedom in the neighborhood of a stationary point at the origin

𝜁
def
=(𝜉,𝜂) = 0. (2)
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1. Resonant normal form (2)

If the Hamilton function 𝛾(𝜁) is analytic at this point, then it expands into a convergent
power series

𝛾(𝜁) =
∑︁

𝛾pq𝜉
p𝜂q, (3)

where p, q ∈ Z𝑛, p,q ⩾ 0, 𝛾pq are constant coefficients. Since the point (2) is
stationary, the expansion of (3) starts with quadratic terms. They correspond to the
linear part of the system (1).

The eigenvalues of its matrix are divided into pairs 𝜆𝑗+𝑛 = −𝜆𝑗 , 𝑗 = 1, . . . , 𝑛. Denote by
vector 𝜆 = (𝜆1, . . . , 𝜆𝑛) the set of basic eigenvalues. As known, canonical coordinate
substitutions 𝜉,𝜂 −→ x,y preserve the Hamiltonian nature of the system.
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1. Resonant normal form (3)

Theorem 1 ([Bruno, 1972, §12]).

There is a canonical formal transformation 𝜉,𝜂 ↔ x,y that reduces the Hamiltonian (3)
to the normal form

𝑔(x,y) =
∑︁

𝑔pqx
pyq, (4)

where the series 𝑔 contains only resonant terms satisfying resonant equation
⟨p− q,𝜆⟩ = 0.

For the real initial system (1), the constant coefficients 𝑔pq of the complex normal
form (4) satisfy special realness relations, and the standard canonical linear coordinate
substitution x,y → X,Y reduces the system (4) into a real system.
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1. Resonant normal form (4)

Definition 1.

For each resonance are defined:

∙ multiplicity k: the number of linearly independent solutions p ∈ Z𝑛 to the
resonant equation

⟨p,𝜆⟩ = 0 (5)

∙ order q: q = min |p| over p ∈ Z𝑛∖{0}, satisfying (5);
∙ 𝑛-frequency resonance: if exactly 𝑛 nonzero eigenvalues 𝜆𝑗 are included in the

nontrivial solution of the resonance equation;
∙ strong resonances are called the resonances of orders 2, 3 or 4.
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1. Resonant normal form (5)

Condition 𝐴𝑛
𝑘

for system with 𝑛 DOF takes place if the resonant equation ⟨p,𝜆⟩ = 0 has no integer
solutions p ∈ Z𝑛 with ‖p‖ ≤ 𝑘.

This condition means that there are no resonances up to and including the order 𝑘. If it
is satisfied, then in the normal form (4)

𝑔 =

[𝑘/2]∑︁
𝑙=1

𝑔𝑙(𝜌) + 𝑔(𝑘)(z, z̄), (6)

where 𝑔𝑙(𝜌) are homogeneous polynomials from 𝜌𝑗 = 𝑖𝑧𝑗𝑧𝑗 , 𝑗 = 1, . . . , 𝑛, of degree 𝑙,
and 𝑔(𝑘) is a series from z, z̄ starting with powers above 𝑘.
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1. Resonant normal form (6)

In particular, under the condition 𝐴𝑛
2 we have

𝑔 = ⟨𝜌,𝜆⟩+ 𝑔(3)(z, z̄). (7)

And under the condition 𝐴𝑛
4 we have

𝑔 = ⟨𝜌,𝜆⟩+ ⟨𝐶𝜌,𝜌⟩+ 𝑔(5)(z, z̄), (8)

where 𝐶 is 𝑛× 𝑛 matrix.
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2. Lyapunov Stability (1)

Definition 2.

A stationary point (SP) 𝜁 = 0 of a real Hamiltonian system (1) is stable by Lyapunov
if for every 𝜀 > 0 in “cube” ‖𝜁‖ < 𝜀 there exists a closed integral (2𝑛 − 1)-dimensional
manifold ℒ surrounding the point 𝜁 = 0 from all sides.
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2. Lyapunov Stability (2)

Lemma 1.

A stationary point 𝜁 = 0 is Lyapunov stable if there exists a sign-definite real integral

𝑓(𝜁) = 𝑓𝑙(𝜁) + 𝑓 (𝑙)(𝜁) (9)

of the system (1), where 𝑓𝑙(𝜁) is a homogeneous form of degree 𝑙. In other words,

{𝑓, 𝛾} = 0, (10)

where {·, ·} is the Poisson bracket, and 𝑓𝑙(𝜁) does not equal to zero at any 𝜁 except the
point 𝜁 = 0.
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2. Lyapunov Stability (3)

Stability is possible only if Re𝜆 = 0. If the condition 𝐴𝑛
2 is satisfied, then all 𝜆𝑗 are

different and non-zero. In this case the complex coordinates x,y are related to the real
coordinates X,Y by the canonical substitution

𝑥𝑗 =
𝑖𝑋𝑗 − 𝑌𝑗√

2𝑖
, 𝑦𝑗 =

𝑖𝑋𝑗 + 𝑌𝑗√
2𝑖

, 𝑗 = 1, . . . , 𝑛.
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2. Lyapunov Stability (4)

With complex conjugation

�̄�𝑗 = −𝑖𝑦𝑗 , 𝑦𝑗 = −𝑖𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,

the Hamiltonian function 𝑔(x,y) goes into itself, i.e. into (4):

𝑔pq = (−𝑖)‖p+q‖𝑔qp,

as far as 𝑝𝑗 , 𝑞𝑗 ⩾ 0.
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2. Lyapunov Stability (5)

Suppose 𝑋2
𝑗 + 𝑌 2

𝑗 = 𝑅𝑗 , 𝜆𝑗 = 𝑖𝛼𝑗 , 𝑗 = 1, . . . , 𝑛. Then in real coordinates 𝑅𝑗 ⩾ 0, 𝛼𝑗

is real,

𝜌𝑗 =𝑥𝑗𝑦𝑗 =
𝑖

2

(︀
𝑋2

𝑗 + 𝑌 2
𝑗

)︀
=

𝑖

2
𝑅𝑗 , 𝑗 = 1, . . . , 𝑛,

⟨𝜆,𝜌⟩ =
𝑛∑︁

𝑗=1

𝜆𝑗𝜌𝑗 = −1

2

𝑛∑︁
𝑗=1

𝛼𝑗

(︀
𝑋2

𝑗 + 𝑌 2
𝑗

)︀
= −1

2
⟨𝛼,R⟩ .

(11)

Theorem 2 ([Lejeune Dirichlet, 1846]).

If the condition 𝐴𝑛
2 is satisfied and the numbers 𝛼1, . . . , 𝛼𝑛 are of the same sign, then

the stationary point 𝜁 = 0 is stable according to Lyapunov.
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2. Lyapunov Stability (6)

Here the role of the integral 𝑓 is played by the Hamiltonian 𝛾 itself, for it is an integral,
the notation (7) has the form (6) with 𝑘 = 2 and the form

𝛾2 = 𝑔2 = −1

2

𝑛∑︁
𝑗=1

𝛼𝑗𝑅𝑗 = −1

2
⟨𝛼,R⟩

is sign-defined, for R ⩾ 0.
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3. Formal stability (1)

By formal we mean power series, about the convergence of which nothing is known.

Definition 3 ([Moser, 1958]).

A stationary point (2) of a real Hamiltonian system (1) is formally stable if there exists
a formal real sign-defined integral (9) of the system (1), i.e., the formal identity (10) is
satisfied and the homogeneous form 𝑓𝑙 is null only at 𝜁 = 0.

Formal stability means that the scattering of solutions from the stationary point is very
slow: slower than any finite degree of 𝑡.
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3. Formal stability (2)

Definition 4 ([Markeev, 1978, Ch. 4, § 4]).

A stationary point (2) of a real Hamiltonian system (1) is formally stable if there exists
a formal real integral

𝑓(𝜁) = 𝑓𝑙(𝜁) + 𝑓𝑙+1(𝜁) + . . .+ 𝑓𝑚(𝜁) + 𝑓 (𝑚)(𝜁)

of system (1), where 𝑓𝑘(𝜁) are homogeneous forms of degree 𝑘 and the sum

𝑓*(𝜁) = 𝑓𝑙 + 𝑓𝑙+1 + . . .+ 𝑓𝑚 (12)

does not equal to zero in some neighborhood of the point 𝜁 = 0 besides it.
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3. Formal stability (3)

Definition 5 ([Bruno, Batkhin, 2012]).

A point 𝜁0 is called a root of order 𝑘 of a polynomial 𝑓(𝜁) if at this point the 𝑓 itself
and all its partial derivatives up to and including order 𝑘 are zero, but at least one
derivative of order 𝑘 + 1 is nonzero.

Conjecture 1.
If a polynomial (12) with 𝑚 > 𝑙 does not converge to zero in some neighborhood of
point 𝜁 = 0 except it, then every root (𝜁) of the polynomial 𝑓𝑙 other than 𝜁 = 0 has an
even multiple.
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3. Formal stability (4)

Since 𝜌𝑗𝜌𝑘 = −1

4
𝑅𝑗𝑅𝑘, then under the condition 𝐴𝑛

4 the sum (8) takes the form

𝑔 = −1

2
⟨𝛼,R⟩ − 1

4
⟨𝐶R,R⟩+ 𝑔(5). (13)

Hence, all elements of matrix 𝐶 are real.

Let 𝐾 ⊂ R𝑛 be a linear shell of integers q satisfying the equation ⟨𝛼,q⟩ = 0, and
𝑄 = {q ⩾ 0, q ̸= 0} ⊂ R𝑛 is a non-negative orthant without origin.

A. Bruno, A. Batkhin (KIAM, Technion ) On Types of Stability in Hamiltonian System 24/37



3. Formal stability (5)

Theorem 3 ([Bruno, 1967]).

If Condition 𝐴𝑛
4 is satisfied and in (13)

⟨𝐶q,q⟩ ≠ 0 for q ∈ 𝐾 ∩𝑄,

then the point 𝜁 = 0 is formally stable in the sense of Definition 3

Here, the normal form of the Hamiltonian (4) from Theorem 1 is used to construct the
formal integral.
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3. Formal stability (6)

According to (11) in real coordinates, the normal form (6) is

𝑔 = −1

2
⟨𝛼,R⟩+

[𝑘/2]∑︁
𝑙=2

ℎ𝑙(R) + 𝑔(𝑘), (14)

where the homogeneous polynomials ℎ𝑙 = (𝑖/2)𝑙 𝑔𝑙(R) are real. The following general-
ization of Theorem 3 is proved verbatim like it.
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3. Formal stability (7)

Theorem 4.
If the condition 𝐴𝑛

𝑘 is satisfied and in the normal form (14)

[𝑘/2]∑︁
𝑙=2

ℎ𝑙(R) ̸= 0 for R ∈ 𝐾 ∩𝑄,

then the point 𝜁 = 0 is formally stable in the sense of Definition 4.
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3. Formal stability. Investigation in a generic case with 3DOF (1)

Consider a Hamiltonian system in the vicinity of the SP for which the following conditions
are satisfied:

∙ the number of degrees of freedom of the system is greater than two;
∙ the quadratic form 𝛾2 in expansion (3) is nondegenerate and is not definite;
∙ the Hamiltonian function 𝛾 smoothly depends of the vector of parameters P from

a domain Π ⊂ R𝑚.
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3. Formal stability. Investigation in a generic case with 3DOF (2)
Corollary 1 (of Formal Stability Theorem 3).

If under the condition of Theorem 3 in R3 the intersection of the plane ⟨𝜆,q⟩ = 0 and
the cone ⟨𝐶q,q⟩ either does not belong to 𝒬, or belongs to 𝒬 = R3

+, but does not
contain the integral vector q, then the SP is formally stable.

Definition 6.
A resonant variety ℛp

𝑛 in the space 𝐾 of coefficients 𝑎1, . . . , 𝑎𝑛 of the semi-
characteristic polynomial 𝜒𝑛(𝜇) of degree 𝑛 is an algebraic variety, on which the vector
of basis eigenvalues 𝜆 is a nontrivial solution to the resonant equation ⟨p,𝜆⟩ = 0 for a
fixed integer vector p* ∈ Z𝑛∖{0}. An analytical representation of the variety ℛp*

𝑛 in an
implicit or parametric form is denoted by 𝑅p*

𝑛 .
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3. Formal stability. Investigation in a generic case with 3DOF (3)

To examine the formal stability of a SP of a Hamiltonian system (1), we should do the
following steps [Batkhin, Khaydarov, 2023]:

∙ find in the space of parameters Π the stability set Σ of the linear system;
∙ find such domains, in which the quadratic form 𝛾2(z) is not sign definite;
∙ find parts 𝑆𝑘 in these domains that do not contain strong resonances;
∙ normalize the Hamiltonian in each of these parts 𝑆𝑘 up to order four, and
∙ apply Formal Stability Theorem 3.

To do this, it is sufficient to select a point in each 𝑆𝑘 in the space of parameters and use
one of the normalization algorithms for the Hamiltonian function. Since all eigenvalues
𝜆𝑘, 𝑘 = 1, . . . , 𝑛, are simple at each interior point of 𝑆𝑘, the invariant normalization
algorithm can be easily applied.
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4. Scattering order of solution (1)

Let the function 𝑓(𝑡) be defined at real 𝑡 → −∞. It is said to have order 𝛿 = 𝛿(𝑡) if
𝛿 = inf 𝜀 such that 𝑓(𝑡)/(−𝑡)𝜀 → 0 at 𝑡 → −∞. If 𝛿 > 0, then 𝑓(𝑡) is unbounded, if
𝛿 < 0, then 𝑓(𝑡) → 0 at 𝑡 → −∞. In the latter case 𝛿(𝑓) < 0, the larger 𝛿 is, the slower
𝑓(𝑡) approaches zero.

Definition 7.

Let the solution 𝜁(𝑡) of the Hamiltonian system (1) tends to a SP (2) at 𝑡 → −∞. On
this solution order of scattering ∆ = min {𝛿‖𝜁‖}.

Definition 8.

The scattering order ̃︀∆ of solutions of the system (1) from the SP (2) is the lower
bound of the scatter order ∆ over all solutions 𝜁(𝑡) that tend to the point (2) at 𝑡 → −∞.
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4. Scattering order of solution (2)

The smaller ̃︀∆ < 0, the faster the solutions are scattered from the SP. At formal stability
the order of scattering of solutions from the SP is zero. Let us estimate the order of
scattering ̃︀∆ in the absence of formal stability. The cases −10−10 < ̃︀∆ < 0 can be
considered as weak stable.

Conjecture 2.

Let the condition 𝐴𝑛
2 and κ = min ‖p + q‖ > 2 by integer solutions p ⩾ 0, q ⩾ 0 of

equation ⟨𝛼,p− q⟩ = 0 be satisfied, then the order of scatter of the system solutions (1)
from the SP ̃︀∆ ⩾ (2− κ)−1.
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5. Conclusion

These results were published in
Bruno A. D., Batkhin A. B. On types of stability in Hamiltonian systems. //
Mathematics and Systems Science. 2023. Vol. 1, no. 1. P. 2269
together with:

1 more details, with examples;
2 number-theoretical approach simplifying the proofs of formal stability;
3 computing of formal stability in a complicated case;
4 similar theory for a neighborhood of a periodic solution.
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