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Difference schemes

The finite difference method proposes replacing the system of
differential equations

dxi
dt

= fi(x1, . . . , xn), i = 1, . . . , n,

or, for short,
dx

dt
= f(x), (1)

with a system of algebraic equations

gi(x, x̂,∆t) = 0, i = 1, . . . , n, (2)

relating the value x of the solution at some moment in time t with
the value x̂ of the solution at the moment in time t+∆t.
The system of the algebraic equation (2) itself will be called a
difference scheme for a system of the differential equations (1).
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Discrete models

In mechanics, both old and new, the quantity dt has often been
treated as a finite increment, and it was implied that Newton’s
equations were actually difference equations [Feynman].

Example
The explicit Euler scheme

x̂− x = f(x)∆t

for linear oscillator preserves the energy H = x2 + y2 only at
∆t → 0.

Classic difference schemes (explicit Runge-Kutta schemes) have few
of algebraic properties (lack of them). We describe properties of
discrete models by looking back at continuous models.
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Midpoint scheme

In 1990, the concept of geometric integrators arose: we construct
schemes that inherit certain algebraic properties of the original
continuous model.
On the midpoint scheme

x̂− x = f

(
x̂+ x

2

)
∆t

we can tell that
it is t-symmetric,
it is symplectic,
it preserves quadratic integrals (Cooper’s theorem).

4 / 32



Quadratic Hamiltonian Cubic Hamiltonian Polynomial Hamiltonian

Systems with quadratic Hamiltonian

The midpoint scheme perfectly imitates a Hamiltonian system

dx

dt
=

∂H

∂y
,

dy

dt
= −∂H

∂x
(3)

with a quadratic Hamiltonian H, for example, a harmonic
oscillator with Hamiltonian H = x2 + y2.

According to Cooper’s theorem, the energy integral is preserved
exactly on the scheme, and the approximate solution itself is a
sequence of points xn = (xn, yn) of the circle x2 + y2 = C.
Each step of the approximate solution is a rotation by an angle

∆u =

xn+1∫
xn

dx√
C − x2

,

which does not depend on n.
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Systems with cubic Hamiltonian

If the Hamiltonian is a cubic polynomial, then the exact solution
to the continuous model lies on a third degree curve

H(x, y) = c,

whose genus is 1. Thus the quadrature∫
dx

Hy(x, y)
= t+ C

on the curve H is elliptic integral of the 1st kind.
If the invariant curve is closed, the functions x(t), y(t) are elliptic,
one of the periods is real and we see periodic movement along the
oval on the phase plane xy.
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Midpoint scheme for systems with cubic Hamiltonian

In the 1990s, we there was a thought that sympletic structure
preservation would lead to an imitation of a continuous model in
the non-linear case. The midpoint scheme is symplictic
Runge-Kutta scheme, i.e.

dx̂ ∧ dŷ = dx ∧ dy.

However, now the energy integral is not conserved, but inherit in a
very tricky formulation.

Theorem (J. M. Sanz-Serna and M.P. Calvo, 1994)

For any k ∈ N, there exists a polynomial Hk(x, y,∆t) such that
Hk goes to H at ∆t → 0,
Hk(x̂, ŷ,∆t) = Hk(x, y,∆t) +O(∆tk).

Thus, in computer experiments, it seems that approximate solution
lies on closed curve Hk(x, y) = c at sufficiently large k.
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Problem of the extra roots

If f is not linear function of x, than equations

x̂− x = f

(
x̂+ x

2

)
∆t

define a multiple-valued correspondence between x and x̂ spaces.
Multiple values of x̂ correspond to the same value x and vice versa.
The geometric meaning of the extra roots is not clear. In numerical
analysis, they are discarded.
They do not allow to investigate the algebraic properties of the
midpoint scheme. This scheme is probably poor in algebraic
properties.
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Reversible schemes

Newton’s equations must define a one-to-one correspondence
between the initial and final positions of a dynamical system.
Difference schemes define a correspondence between the initial and
final positions of the system, which is described by algebraic
equations. Such a correspondence will be one-to-one if and only if
it is birational.

Definition
We call a difference scheme reversible if it specifies a birational
map between an n-dimensional x-space and an n-dimensional
x̂-space.

We believe, that the «reversibility» is more significance than
conservativity or symplectivity.
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Approximate solutions by reversible scheme

Definition
The birational map of projective space is called the Cremona
transformation.

Let a transition from layer t to layer t+∆t be described by the
Cremona transformation C depeesnding on ∆t:

x̂ = Cx.

Definition
By the approximate solution released from the point x, we mean the
sequence

O(x) = {Cmx, m ∈ Z},

i.e., the orbit of Cremona transformation C.
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Construction of reversible schemes

Any dynamical system with a quadratic right-hand side

dx

dt
= f(x)

can be approximation by the equation

x̂− x = F∆t,

which is linear with respect to x and x̂. Thus x̂ is a rational function
of x and vice verse x is a rational function of x̂.

Example

dx

dt
= 1 + x2 → x̂− x = (1 + x · x̂)∆t.
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An unconventional integrator of W. Kahan

Firstly, indicated method to construct reversible schemes was
presented by William "Velvel" Kahan in 1993 at conference in
Ontario.

I have used these unconventional methods for 24 years
without quite understanding why they work so well as they
do, when they work. That is why I pray that some reader
of these notes will some day explain the methods’ behavior
to me better than I can, and perhaps improve them.

In 1994 Sanz-Serna applied the method to Volterra-Latka system
and explain the successes of the method to the inheritance of the
symplectic structure

dx ∧ dy

xy
.

Ref.: J.M. Sanz-Serna // Applied Numerical Mathematics 16
(1994) 245-250.
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Invariant curves

In two dimensional case, the points of the approximate solution lie
on some curve even at big step ∆t.

Example (Volterra-Lotka system)


dx

dt
= −x(y − 2),

dy

dt
= (x− 2)y,

x(0) = 1, y(0) = 2
1.0 1.5 2.0 2.5 3.0 3.5

x
1.0

1.5

2.0

2.5

3.0

3.5

y

Two solutions were found at ∆t = 0.30083

blue by the Runge-Kutta scheme and
red by the reversible scheme
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Kahan’s method for Hamiltonian systems

1 Geometric properties of Kahan’s method are restricted to
quadratic vector fields.

2 For the systems with cubic hamiltonian, Kahan’s method
conserved the modified Hamiltonian

H +
∆t

3
∇HT

(
E − ∆t

2

∂f

∂x

)−1

f

3 For the systems with cubic Hamiltonian, Kahan’s method
preserves the measure

dx1 ∧ dx2 · · · ∧ dxn

det
(
E − ∆t

2
∂f
∂x

)
Ref.: E. Celledoni et al // J. Phys. A: Math. Theor. 46 (2013)
025201
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Method of Hirota and Kimura

In 2000, reversible scheme was written by Hirota and Kimura
for odes, describing the motion of the top. For 2 classical
cases, modified integrals was written. The expressions for two
integral for Euler-Poinsot case are the same which we
presented at PCA’2022.
In 2010, Suris et al. indicated that the scheme of Hirota and
Kimura define Cremona transformation between the layers.
In 2019, Suris et al. described the method of Hirota and
Kimura for finding the integrals. It is, of course, the variation
around Lagutinski method (1912).

Refs.: 1.) Hirota and Kimura // Journal of the Physical Society of
Japan Vol. 69, No. 3, March, 2000, pp. 627-630; No. 10, October,
2000, pp. 3193-3199; 2.) Suris et al. // Math. Nachr. 283, No.
11, 1654 – 1663 (2010); 3.) Suris et al. // Experimental
Mathematics, 26:3, 324-341 (2019).
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Systems with cubic Hamiltonian, external properties

Kahan’s scheme perfectly imitates a Hamiltonian system with a
cubic Hamiltonian H, for example, a elliptic ℘-oscillator.

According to 1st Celledoni’s theorem, the symplectic structure
is inherit, i.e.

dx̂ ∧ dŷ = (1 +O(∆t))dx ∧ dy.

According to 2nd Celledoni’s theorem, the energy integral is
inherit, thus the approximate solution itself is a sequence of
points xn = (xn, yn) of an elliptic curve f(x, y,∆t) = c.

Ref.: Suris et al. // Proc. R. Soc. A. 2019. 475: 20180761
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Systems with cubic Hamiltonian, quadrature

Consider more closely the narrowing of Cremona map to the
invariant curve f(x, y,∆t) = c.
Using constructions from Picard’s theorem, we can prove that the
difference scheme can be again represented using quadrature

x̂∫
x

v(x, y,∆t)dx = ∆u(∆t),

where vdx1 is an elliptic integral of the 1st kind on invariant curve
and, of course,

vdx → dx

Hy
(at∆t → 0).

Ref.: 1.) Malykh et al. // Mathematics 2024, 12 (1), 167; 2.)
Malykh et al. // Zapiski sem. POMI. 2023

17 / 32



Quadratic Hamiltonian Cubic Hamiltonian Polynomial Hamiltonian

Systems with cubic Hamiltonian, internal properties

Consequences of quadrature representation:

1 The approximate solution
can be represented using
an elliptic function of a
discrete argument.

2 We can pick a step ∆t so
that O(x) is a periodic
sequence.

1.0 0.5 0.0 0.5 1.0
p

1.0

0.5

0.0

0.5

1.0

q

The reversible difference scheme imitates all the known properties
of the system with cubic Hamiltonian.
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Popular Q.

What about the convergence and stability of Kahan’s scheme? —
Kahan’s sheme is Runge-Kutta scheme of 2nd order.
If invariant curve is closed, than the approximate solution has the
period T , which depends on ∆t. This period tends to the exact
period at ∆t → 0, but of course

max
n∈N

|x(n∆t)− xn| ̸→ 0

C-norm is unnatural for this problem.
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Points at infinity

If at some value k the denominator of the transformation becomes
zero, then the point xk+1 will be infinitely remote. Thus we
consider x as a point in the projective space Pn.

Example (℘-oscillator)


dx

dt
= y,

d

dt
y = 6x2 − 1,

x(0) = 1, y(0) = 2

The exact solution is periodic
and has pols of 2nd degree.

2 4 6 8 10
t

2

4

6

8

10

x

The approximate solutions describe correct the behavior at infinity.
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The main difference between discrete and continuous models

Newton’s equations must define a one-to-one correspondence
between the initial and final positions of a dynamical system.
The system with cubic Hamiltonian define birational transformation
on the integral curve H(x, y) = C, which cannot be continued to
the Cremona transformation of all planes xy (it’s Hermite-Klein
discussion!).
However, we can approximate the system so that transition from
layer to layer is carried out by the Cremona transformation of the
entire xy plane.
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Systems with polynomial Hamiltonian

If the Hamiltonian is a polynomial of degree r > 3, then the exact
solution to the continuous model lies on an algebraic curve

H(x, y) = c,

whose genus more than 1. Thus the quadrature∫
dx

Hy(x, y)
= t+ C

on the curve H is Abelian integral of the 1st kind.
Integral cannot be inverted and the functions x(t), y(t) aren’t
meromorphical function of t (Jacobi problem).
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Quadratization of dynamical systems

Formally, our method is suitable only for dynamical systems with
quadratic right-side.

Theorem (Appelroth, 1902)

Any dynamical system with polynomial right-side can be rewritten
as dynamical systems with quadratic right-side in new variables.

Of course, the number of new variables is more than the number of
initial variables, i.e. n.
In XXI century the reduction of the given dynamical system to
dynamical systems with quadratic right-side was called
quadratization.
Ref: Pogudin et al. // Combinatorial Algorithms, 2021, p.
122–136.
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Quadratization and discretization

Any system with polynomial Hamiltonian can be integrated by
reversible scheme in two steps:

1 the quadratization by Appelroth,
2 the discretization by Kahan.

Although Newton’s equations must define a one-to-one
correspondence between the initial and final positions of a
dynamical system, these equations do not actually define a
one-to-one correspondence between the initial and final states of
the system. We can impose violently this property on the difference
scheme.
Natural questions are:

1 What happens at movable branch points of exact solutions?
2 What happens to the integrals that connect old and additional

variables?
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Example

Consider the system with Hamiltonian of this system is

H =
x1

3

3
− x2

5

5
.

The solution is described by the quadrature∫
dx2

2/3

√
3
5x

5
2 + 3C

= t+ C ′.

The particular solution of the system (3) with the initial conditions
x1 = x2 = 1 at t = 0 has a branching point t ≈ 0.52.
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Quadratisation

After quadratisation we have

ẋ1 = w0 · x2,
ẋ2 = x1

2,

ẇ0 = 2 · w1 · x1,
ẇ1 = w0

2 + 2 · w2 · x2,
ẇ2 = 3 · w1

2.

(4)

Currently, there are several implementations of quadratization:
Qbee by A. Bychkov and BioCham by M. Hemery et all.
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Branch point

The approximate solution passes through the branch point as a
pole.

Example

Before the branch point the
exact and approximate
solutions are coincide. After
this point the exact solution
in imaginary, but the
approximate is real.
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Integral variety

The integral that connect old and additional variables is not
preserved by reversible schemes.

Example

Before the branch point the
expression

w0 = x32

is equal to 0 on exact solution
and is small on approximate
solution, but its value at the
branch point is very large
(about 1029).
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Can this approach be recommended?

The appropriateness of applying the combined Appelroth-Kahan
approach to natural phenomena depends on which properties of
these phenomena are important for research and which can be
sacrificed.
This approach is good if the one-to-one correspondence between
the initial and final positions of the system is most important.
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Conclusion

1 The midpoint scheme perfectly imitates a system with a
quadratic Hamiltonian H,

2 Kahan’s scheme imitates a system with a cubic Hamiltonian H
if we replace birational transformations on the curve with
Cremona transformations

3 The combined Appelroth-Kahan approach allows to
approximate a continuous model with a polynomial
Hamiltonian to a discrete model in which there is a one-to-one
correspondence between the initial and final positions of the
system.
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Conclusion

Thus, when constructing difference schemes, we propose to move
from the concept of inheritance of algebraic properties of a dynamic
system (the idea of geometric integrators) to the concept of violent
imposing of such properties, from the concept of mimeting a
continuous model of a phenomenon — to the concept of creating a
independent discrete model describing the same phenomenon.
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The End
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